Worksheet \#16

(1) Let $\mathbf{a}=-2 \mathbf{i}+3 \mathbf{j}$ and $\mathbf{b}=2 \mathbf{i}-3 \mathbf{j}$ and $\mathbf{c}=-5 \mathbf{j}$. Find the following: (a) $2 \mathbf{a}-4 \mathbf{b}$ (b) $\mathbf{a} \cdot \mathbf{b}$ (c) $|\mathbf{a}| \mathbf{c} \cdot \mathbf{a}$

Solution:

(a) $2 \mathbf{a}-4 \mathbf{b}=<-12,18>$
(b) $\mathbf{a} \cdot \mathbf{b}=-2(2)-3(3)=-13$
(c) $|\mathbf{a}|=\sqrt{4+9}=\sqrt{13}$
$\mathbf{c} \cdot \mathbf{a}=-2(0)-15=-15$
$|\mathbf{a}| \mathbf{c} \cdot \mathbf{a}=-15 \sqrt{13}$
(2) Find the cosine of the angle between \mathbf{a} and \mathbf{b} and make a sketch.
(a) $\mathbf{a}=\langle-1,2>\mathbf{b}=\langle 6,0>$ (b) $\mathbf{a}=\langle 4,-7>\mathbf{b}=<-8,10\rangle$

Solution:

(a) $\mathbf{a} \cdot \mathbf{b}=-6 \quad|\mathbf{a}|=\sqrt{5} \quad|\mathbf{b}|=6$
$\cos \theta=\frac{-1}{\sqrt{5}}=-\frac{\sqrt{5}}{5}$
(b) $\mathbf{a} \cdot \mathbf{b}=-32-70=-102 \quad|\mathbf{a}|=\sqrt{16+49}=\sqrt{65} \quad|\mathbf{b}|=\sqrt{64+100}=\sqrt{164}$ $\cos \theta=\frac{-102}{\sqrt{65(164)}}$
(3) Write the vector $\overrightarrow{A B}$ in the form $\mathbf{a}=a_{1} \mathbf{i}+a_{2} \mathbf{j}$ (a) $A(2,2), B(-3,4)$ (b) $A(0,4), B(-6,0)$ Solution:
(a) $\mathbf{a}=<-3-2,4-2>=-5 \mathbf{i}+2 \mathbf{j}$
(b) $\mathbf{a}=<-6-0,0-4>=-6 \mathbf{i}-4 \mathbf{j}$
(4) Show that the vectors $\langle 6,3\rangle$ and $\langle-1,2\rangle$ are perpendicular.

Solution:

$$
\cos \theta=\frac{\langle 6,3\rangle \cdot\langle-1,2\rangle}{|<6,3\rangle| |<-1,2\rangle \mid}=\frac{-6+6}{\sqrt{(36+9)(5)}}=0
$$

The angle between the two vectors is $\frac{\pi}{2}$. Thus they are perpendicular.
(5) Find the scalar and vector projections of \mathbf{b} onto a where $\mathbf{a}=<1,1,1\rangle$ and $\mathbf{b}=<1,-1,1>$. Also, find the orthogonal projection.

Solution:

$$
\begin{gathered}
\operatorname{comp}_{\mathbf{a}} \mathbf{b}=\frac{\mathbf{b} \cdot \mathbf{a}}{|\mathbf{a}|}=\frac{1-1+1}{\sqrt{3}}=\frac{1}{\sqrt{3}} \\
\operatorname{proj}_{\mathbf{a}} \mathbf{b}=\frac{\mathbf{b} \cdot \mathbf{a}}{|\mathbf{a}|^{2}} \mathbf{a}=\frac{1}{3}<1,1,1> \\
\operatorname{orth}_{\mathbf{a}} \mathbf{b}=\mathbf{b}-\frac{\mathbf{b} \cdot \mathbf{a}}{|\mathbf{a}|^{2}} \mathbf{a}=<1,-1,1>-\frac{1}{3}<1,1,1>=<2 / 3,-4 / 3,2 / 3>
\end{gathered}
$$

