Worksheet \#15

(1) For $A(4,4,-1)$ and $B(4,1,4)$, find a vector a with representation given by the directed line segment $\overrightarrow{A B}$. Draw $\overrightarrow{A B}$ and the equivalent representation starting at the orgin.
Solution:
$\overrightarrow{A B}=\langle 0,-3,5\rangle$
(2) Find $\mathbf{a}+\mathbf{b}, 2 \mathbf{a}+3 \mathbf{b},|\mathbf{a}|$, and $|\mathbf{a}-\mathbf{b}|$ where $\mathbf{a}=2 \mathbf{i}-4 \mathbf{j}+4 \mathbf{k}$, and $\mathbf{b}=2 \mathbf{j}-\mathbf{k}$.

Solution:

$$
\begin{aligned}
& \quad \mathbf{a}+\mathbf{b}=<2,-2,3> \\
& 2 \mathbf{a}+3 \mathbf{b}=<4,-2,5> \\
& |\mathbf{a}|=\sqrt{4+16+16}=\sqrt{36}=6 \\
& |\mathbf{a}-\mathbf{b}|=\sqrt{2^{2}+(-4-2)^{2}+(4+1)^{2}}=\sqrt{65}
\end{aligned}
$$

(3) Find a vector that has the opposite direction as $\langle-2,4,2\rangle$ but has length 6 .

Solution:

First, we need to make a unit vector.
$|<-2,4,2\rangle \mid=\sqrt{4+16+4}=\sqrt{24}=2 \sqrt{6}$
So the unit vector \mathbf{u} is $\mathbf{u}=\left\langle-\frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}}, \frac{1}{\sqrt{6}}>\right.$
To get a vector in the opposite direction with length 6 , we need to multiply \mathbf{u} by -6 .
Thus, the answer is $\left\langle\frac{6}{\sqrt{6}},-\frac{12}{\sqrt{6}},-\frac{6}{\sqrt{6}}\right\rangle$
(4) Find a unit vector that has the same direction as $\langle-4,2,4\rangle$.

Solution:

$$
|<-4,2,4>|=\sqrt{16+4+16}=6
$$

Thus the unit vector in the same direction is $\left\langle-\frac{2}{3}, \frac{1}{3}, \frac{2}{3}\right\rangle$.
(5) If a child pulls a sled through the snow on a level path with a force of 50 N exerted at an angle of $\frac{\pi}{4}$ above the horizontal, find the horizontal and vertical components of the force.
Solution:

$$
\mathbf{F}=50 \cos \left(\frac{\pi}{4}\right) \mathbf{i}+50 \sin \left(\frac{\pi}{4}\right) \mathbf{j}=25 \sqrt{2} \mathbf{i}+25 \sqrt{2} \mathbf{j}
$$

