Worksheet \#12

(1) Find the Mclaurin series for $f(x)=e^{-2 x}$.

Solution: We know the Mclaurin series for e^{y} is $e^{y}=\sum_{n=0}^{\infty} \frac{y^{n}}{n!}$. Thus

$$
e^{-2 x}=\sum_{n=0}^{\infty} \frac{(-2 x)^{n}}{n!}=\sum_{n=0}^{\infty} \frac{(-2)^{n} x^{n}}{n!} .
$$

(2) Find the Mclaurin series for $f(x)=\sqrt{1-x}$.

Solution: We will use the binomial series formula. Thus the series is

$$
\sqrt{1-x}=\sum_{k=0}^{\infty}\binom{1 / 2}{k}(-1)^{k} x^{k}
$$

(3) Find the $4^{\text {th }}$ degree Taylor polynomial of $f(x)=\frac{1}{x}$ centered at $a=-3$. Give a bound for the error.

Solution:

$$
\begin{aligned}
f(x) & =\frac{1}{x} & f(-3) & =-\frac{1}{3} \\
f^{\prime}(x) & =-\frac{1}{x^{2}} & f^{\prime}(-3) & =-\frac{1}{3^{2}} \\
f^{\prime \prime}(x) & =2 \frac{1}{x^{3}} & f^{\prime \prime}(-3) & =-2 \frac{1}{3^{3}} \\
f^{(3)}(x) & =-6 \frac{1}{x^{4}} & f^{(3)}(-3) & =-6 \frac{1}{3^{4}} \\
f^{(4)}(x) & =24 \frac{1}{x^{5}} & f^{(4)}(-3) & =-24 \frac{1}{3^{5}}
\end{aligned}
$$

Thus

$$
T_{4}(x)=-\frac{1}{3}-\frac{1}{3^{2}}(x+3)-\frac{2}{3^{3}}(x+3)^{2}-\frac{6}{3^{4}}(x+3)^{3}-\frac{24}{3^{5}}(x+3)^{4}
$$

The error bound $R_{4}(x)$ is such that $\left|R_{4}(x)\right| \leq \frac{M}{5!}|x+3|^{5}$ where $M=\max _{-d-3 \leq x \leq d-3}\left|\frac{24 * 5}{x^{6}}\right|=$ $\frac{24 * 5}{(3-d)^{6}}$.
(4) Find the Taylor series of $f(x)=x-x^{3}$ centered at $a=2$ and the radius of convergence.

Solution:

$$
\begin{array}{rlrl}
f(x) & =x-x^{3} & f(2) & =-6 \\
f^{\prime}(x) & =1-3 x^{2} & f^{\prime}(2) & =-11 \\
f^{\prime \prime}(x) & =-6 x & f^{\prime \prime}(2) & =-12 \\
f^{(3)}(x) & =-6 & f^{(3)}(2) & =-6 \\
f^{(n)}(x) & =0 & f^{(n)}(x) & =0 \text { for } n>3
\end{array}
$$

Thus $f(x)=-6-11(x-2)-\frac{12}{2!}(x-2)^{2}-\frac{6}{3!}(x-2)^{3}$ for all x.

