
Worksheet #10

Find the radius and interval of convergence of the series.
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Solution: We use the ratio test.
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Thus the series will converge for |2x−1|
5 < 1. Rewriting this, we find we need |x− 1/2| <

5/2. The radius of convergence is R = 5/2. To determine interval of convergence, we
must check the endpoints of −2 < x < 3.

When x = −2, the series becomes
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series test. When x = 3, the series becomes
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n1/2 which diverges by the p-test.
Thus the interval of convergence is −2 ≤ x < 3.
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Solution: We use the ratio test.
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Thus the series will converge for |x| < 1. The radius of convergence is R = 1. To
determine interval of convergence, we must check the endpoints.

When x = 1, the series becomes
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test. When x = −1, the series becomes
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Thus the interval of convergence is −1 < x ≤ 1.
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Solution: We use the ratio test.
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Thus the series will converge for |x − 3| < 1. The radius of convergence is R = 1. To
determine interval of convergence, we must check the endpoints of 2 < x < 4.

1



2

When x = 4, the series becomes
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test. When x = 2, the series becomes
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Thus the interval of convergence is 2 < x ≤ 4.
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Solution: We use the ratio test.
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This goes to infinity for all x not equal to 1/2. Thus the radius of convergence is R = 0
and the interval of convergence is the point x = 1/2.


