Worksheet \#10

Find the radius and interval of convergence of the series.
(1) $\sum_{n=1}^{\infty} \frac{(2 x-1)^{n}}{5^{n} \sqrt{n}}$

Solution: We use the ratio test.

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left|\frac{(2 x-1)^{n+1}}{5^{n+1} \sqrt{n+1}} \frac{5^{n} \sqrt{n}}{(2 x-1)^{n}}\right| & =\lim _{n \rightarrow \infty}\left|\frac{(2 x-1) \sqrt{n}}{5 \sqrt{n+1}}\right| \\
& =\frac{|2 x-1|}{5} \lim _{n \rightarrow \infty} \frac{\sqrt{n}}{\sqrt{n+1}}=\frac{|2 x-1|}{5}
\end{aligned}
$$

Thus the series will converge for $\frac{|2 x-1|}{5}<1$. Rewriting this, we find we need $|x-1 / 2|<$ $5 / 2$. The radius of convergence is $R=5 / 2$. To determine interval of convergence, we must check the endpoints of $-2<x<3$.

When $x=-2$, the series becomes $\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n^{1 / 2}}$ which converges by the alternating series test. When $x=3$, the series becomes $\sum_{n=0}^{\infty} \frac{1}{n^{1 / 2}}$ which diverges by the p-test.

Thus the interval of convergence is $-2 \leq x<3$.
(2) $\sum_{n=1}^{\infty} \frac{(-1)^{n} x^{n}}{n^{1 / 3}}$

Solution: We use the ratio test.

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left|\frac{x^{n+1}}{(n+1)^{1 / 3}} \frac{n^{1 / 3}}{x^{n}}\right| & =\lim _{n \rightarrow \infty}\left|x\left(\frac{n}{(n+1)}\right)^{1 / 3}\right| \\
& =|x| \lim _{n \rightarrow \infty}\left(\frac{n}{(n+1)}\right)^{1 / 3}=|x|
\end{aligned}
$$

Thus the series will converge for $|x|<1$. The radius of convergence is $R=1$. To determine interval of convergence, we must check the endpoints.

When $x=1$, the series becomes $\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n^{1 / 3}}$ which converges by the alternating series test. When $x=-1$, the series becomes $\sum_{n=0}^{\infty} \frac{1}{n^{1 / 3}}$ which diverges by the p-test.

Thus the interval of convergence is $-1<x \leq 1$.
(3) $\sum_{n=1}^{\infty} \frac{(-1)^{n}(x-3)^{n}}{2 n+1}$

Solution: We use the ratio test.

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left|\frac{(x-3)^{n+1}}{2 n+2} \frac{2 n+1}{(x-3)^{n}}\right| & =\lim _{n \rightarrow \infty}\left|(x-3) \frac{2 n+1}{2 n+2}\right| \\
& =|(x-3)| \lim _{n \rightarrow \infty}\left(\frac{2 n+1}{2 n+2}\right)=|x-3|
\end{aligned}
$$

Thus the series will converge for $|x-3|<1$. The radius of convergence is $R=1$. To determine interval of convergence, we must check the endpoints of $2<x<4$.

When $x=4$, the series becomes $\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2 n+1}$ which converges by the alternating series test. When $x=2$, the series becomes $\sum_{n=0}^{\infty} \frac{1}{2 n+1}$ which diverges by comparison test with $\frac{1}{n}$.

Thus the interval of convergence is $2<x \leq 4$.
(4) $\sum_{n=1}^{\infty} n!(2 x-1)^{n}$

Solution: We use the ratio test.

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left|\frac{(n+1)!(2 x-1)^{n+1}}{n!(2 x-1)^{n}}\right| & =\lim _{n \rightarrow \infty}|(n+1)(2 x-1)| \\
& =|2 x-1| \lim _{n \rightarrow \infty}(n+1)
\end{aligned}
$$

This goes to infinity for all x not equal to $1 / 2$. Thus the radius of convergence is $R=0$ and the interval of convergence is the point $x=1 / 2$.

