1 Evaluate $\int x \cos ^{2}(3 x) d x$

2 Evaluate $\int e^{2 x} \sin x d x$.

3 Could you in principle compute $\int x^{10^{10}} e^{x} d x$, and if so, how?

4 Evaluate $\int \sin ^{3}(x) \cos ^{4}(x) d x$.

5 Evaluate $\int \sec ^{4}(x) \tan ^{4}(x) d x$.

6 What substitution would you use to evaluate $\int x^{3} \sqrt{16+x^{2}} d x$?

7 Evaluate $\int \frac{d x}{\left(9-x^{2}\right)^{3 / 2}} d x$.

8 Is the angle between the vectors $\mathbf{a}=\langle 3,-1,2\rangle$ and $\mathbf{b}=\langle 2,2,4\rangle$ acute, obtuse, or right?

9 Find the area of the parallelogram whose vertices are $(-1,2,0),(0,4,2),(2,1,-2)$, and ($3,3,0$).

10 If \mathbf{a} and \mathbf{b} are both nonzero vectors and $\mathbf{a} \cdot \mathbf{b}=|\mathbf{a} \times \mathbf{b}|$, what can you say about the relationship between \mathbf{a} and \mathbf{b} ?

11 Consider the vectors $\mathbf{a}=\langle 4,1\rangle$ and $\mathbf{b}=\langle 2,2\rangle$, shown below. Compute $\cos \theta$, \mathbf{u}, and the length x.

Note: you should not leave unevaluated trigonometric functions in your answer.

Math 8 Winter 2010 - Midterm 2 Review Problems
12 Find the equation of the plane which passes through the point $(2,-3,1)$ and contains the line

$$
x=3 t-2, \quad y=t+3, \quad z=5 t-3 .
$$

13 Find the line of intersection of the planes $x+y+z=12$ and $2 x+3 y+z=2$.

14 Compute the position vector for a particle which passes through the origin at time $t=0$ and has velocity vector

$$
\mathbf{r}(t)=2 t \mathbf{i}+\sin t \mathbf{j}+\cos t \mathbf{k}
$$

15 Show that if a particle moves at constant speed, then its velocity and acceleration vectors are orthogonal. Note that this does not mean that the velocity is 0! (Hint: consider the derivative of $\mathbf{v} \cdot \mathbf{v}$.)

16 Consider the curve defined by

$$
\mathbf{r}(t)=\langle 4 \sin c t, 3 c t, 4 \cos c t\rangle
$$

What value of c makes the arc length of the space curve traced by $\mathbf{r}(t), 0 \leq t \leq 1$, equal to 10 ?

