1 Evaluate $\int x \cos ^{2} 3 x d x$
Solution: First rewrite $\cos ^{2} 3 x$ using the half-angle formula:

$$
\int x \cos ^{2} 3 x d x=\int x\left(\frac{1+\cos 6 x}{2}\right) d x=\frac{1}{2} \int x d x+\frac{1}{2} \int x \cos 6 x d x
$$

Now use integration by parts to evaluate $\int x \cos 6 x d x$, setting $u=x$ and $d v=\cos 6 x d x$, which makes $d u=d x$ and $v=\sin 6 x / 6$:

$$
\begin{aligned}
\frac{1}{2} \int x d x+\frac{1}{2} \int x \cos 6 x d x & =\frac{x^{2}}{4}+\frac{x \sin 6 x}{12}-\int \frac{\sin 6 x}{12} d x \\
& =\frac{x^{2}}{4}+\frac{x \sin 6 x}{12}+\frac{\cos 6 x}{72} d x+C
\end{aligned}
$$

2 Evaluate $\int e^{2 x} \sin x d x$.
Solution: We use integration by parts twice. Set $I=\int e^{2 x} \sin x d x$. Now, using integration by parts with $u=e^{2 x}$ and $d v=\sin x d x$ (the other choice of u and $d v$ works just as well), so $d u=2 e^{2 x} d x$ and $v=-\cos x$, we have

$$
I=-e^{2 x} \cos x-\int-2 e^{2 x} \cos x d x
$$

Using integration by parts again with $u=-2 e^{2 x}$ and $d v=\cos x d x$, we get

$$
\begin{aligned}
I & =-e^{2 x} \cos x-\left(-2 e^{2 x} \sin x-\int-4 e^{2 x} \sin x d x\right) \\
& =-e^{2 x} \cos x+2 e^{2 x} \sin x-4 \int e^{2 x} \sin x d x+C \\
& =-e^{2 x} \cos x+2 e^{2 x} \sin x-4 I+C
\end{aligned}
$$

Solving this equation for I, we see that

$$
I=\frac{-e^{2 x} \cos x+2 e^{2 x} \sin x}{5}+C
$$

3 Could you in principle compute $\int x^{10^{10}} e^{x} d x$, and if so, how?
Solution: Yes, using integration by parts 10^{10} times, each time setting u equal to the polynomial and letting $d v=e^{x} d x$.

4 Evaluate $\int \sin ^{3} x \cos ^{4} x d x$.
Solution: Since the power of sine is odd, we convert 2 of the sines into cosines using $\sin ^{2} x+\cos ^{2} x=$ 1 , so $\sin ^{2} x=1-\cos ^{2} x$:

$$
\int \sin ^{3} x \cos ^{4} x d x=\int \sin x\left(1-\cos ^{2} x\right) \cos ^{4} x d x
$$

Now we make a u-substitution, setting $u=\cos x$ and $d u=-\sin x d x$:

$$
\begin{aligned}
\int \sin x\left(1-\cos ^{2} x\right) \cos ^{4} x d x & =-\int\left(1-u^{2}\right) u^{4} d u \\
& =-\int u^{4}-u^{6} d u \\
& =-\frac{u^{5}}{5}+\frac{u^{7}}{7}+C \\
& =-\frac{\cos ^{5} x}{5}+\frac{\cos ^{7} x}{7}+C .
\end{aligned}
$$

5 Evaluate $\int \sec ^{4} x \tan ^{4} x d x$.
Solution: Since the power of secant is even, we save a $\sec ^{2} x$ and convert the other secants to tangents using the identity $\sec ^{2} x=1+\tan ^{2} x$:

$$
\int \sec ^{4} x \tan ^{4} x d x=\int \sec ^{2} x\left(1+\tan ^{2} x\right) \tan ^{4} x d x
$$

Now we make a u-substitution, setting $u=\tan x$ and $d u=\sec ^{2} x d x$:

$$
\begin{aligned}
\int \sec ^{2} x\left(1+\tan ^{2} x\right) \tan ^{4} x d x & =\int\left(1+u^{2}\right) u^{4} d u \\
& =\int u^{4}+u^{6} d u \\
& =\frac{u^{5}}{5}+\frac{u^{7}}{7}+C \\
& =\frac{\tan ^{5} x}{5}+\frac{\tan ^{7} x}{7}+C .
\end{aligned}
$$

6 What substitution would you use to evaluate $\int x^{3} \sqrt{16+x^{2}} d x$?

Solution: We would like to simplify the radical $\sqrt{16+x^{2}}$ using the identity $16+16 \tan ^{2} \theta=16 \sec ^{2} \theta$, so we would set $x=4 \tan \theta$.

7 Evaluate $\int \frac{d x}{\left(9-x^{2}\right)^{3 / 2}}$.
Solution: The goal is to simplify $\left(9-x^{2}\right)^{3 / 2}$ using the identity $9-9 \sin ^{2} \theta=9 \cos ^{2} \theta$, so we set $x=3 \sin \theta$, giving $d x=3 \cos \theta$:

$$
\begin{aligned}
\int \frac{d x}{\left(9-x^{2}\right)^{3 / 2}} & =\int \frac{3 \cos \theta}{\left(9-9 \sin ^{2} \theta\right)^{3 / 2}} d \theta \\
& =\int \frac{3 \cos \theta}{3^{3} \cos ^{3} \theta} d \theta \\
& =\frac{1}{9} \int \frac{d \theta}{\cos ^{2} \theta} \\
& =\frac{1}{9} \int \sec ^{2} \theta d \theta \\
& =\frac{1}{9} \tan \theta+C .
\end{aligned}
$$

Now we would draw a right triangle with $\sin \theta=x / 3$ to compute that $\tan \theta=x / \sqrt{9-x^{2}}$, giving us that

$$
\int \frac{d x}{\left(9-x^{2}\right)^{3 / 2}}=\frac{x}{9 \sqrt{9-x^{2}}}+C
$$

8 Is the angle between the vectors $\mathbf{a}=\langle 3,-1,2\rangle$ and $\mathbf{b}=\langle 2,2,4\rangle$ acute, obtuse, or right?

Solution: Since $\mathbf{a} \cdot \mathbf{b}=6-2+8=12>0$ and $\mathbf{a} \cdot \mathbf{b}=|\mathbf{a}||\mathbf{b}| \cos \theta$, we see that $\cos \theta>0$, so the angle between \mathbf{a} and \mathbf{b} is acute.

9 Find the area of the parallelogram whose vertices are $(-1,2,0),(0,4,2),(2,1,-2)$, and $(3,3,0)$.
Solution: Label the points P, Q, R, and S. Then $\overrightarrow{P Q}=\langle 1,2,2\rangle, \overrightarrow{P R}=\langle 3,-1,-2\rangle$ and $\overrightarrow{P S}=\langle 4,1,0\rangle$. It follows that the parallelogram is determined by $\overrightarrow{P Q}$ and $\overrightarrow{P R}$, so it's area is $|\overrightarrow{P Q} \times \overrightarrow{P R}|=|\langle-2,8,-7\rangle|=\sqrt{4+64+49}=\sqrt{117}$.

10 If \mathbf{a} and \mathbf{b} are both nonzero vectors and $\mathbf{a} \cdot \mathbf{b}=|\mathbf{a} \times \mathbf{b}|$, what can you say about the relationship between \mathbf{a} and \mathbf{b} ?

Solution: We are given that $\mathbf{a} \cdot \mathbf{b}=|\mathbf{a} \times \mathbf{b}|$, and we know that

$$
\begin{aligned}
\mathbf{a} \cdot \mathbf{b} & =|\mathbf{a}||\mathbf{b}| \cos \theta, \text { while } \\
|\mathbf{a} \times \mathbf{b}| & =|\mathbf{a}||\mathbf{b}| \sin \theta
\end{aligned}
$$

It follows that we must have $\cos \theta=\sin \theta$, and the only value of θ which satisfies this is $\theta=\pi / 4$, so the two vectors are at a 45° angle to each other.

11 Consider the vectors $\mathbf{a}=\langle 4,1\rangle$ and $\mathbf{b}=\langle 2,2\rangle$, shown below. Compute $\cos \theta$, \mathbf{u}, and the length x.

Note: you should not leave unevaluated trigonometric functions in your answer.

Solution: As θ is the angle between \mathbf{a} and \mathbf{b}, we can find it via the dot product:

$$
\mathbf{a} \cdot \mathbf{b}=10=|\mathbf{a}||\mathbf{b}| \cos \theta=\sqrt{17} \sqrt{8} \cos \theta
$$

so $\cos \theta=\frac{10}{\sqrt{17} \sqrt{8}}$.
Now,

$$
\mathbf{u}=\operatorname{proj}_{\mathbf{a}} \mathbf{b}=\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}|^{2}} \mathbf{a}=\frac{10}{17}\langle 4,1\rangle=\left\langle\frac{40}{17}, \frac{10}{17}\right\rangle .
$$

Finally, using the Pythagorean Theorem,

$$
x=\sqrt{|\mathbf{b}|^{2}-|\mathbf{u}|^{2}}=\sqrt{8-\frac{100}{17}}=\sqrt{\frac{36}{17}}=\frac{6}{\sqrt{16}} .
$$

12 Find the equation of the plane which passes through the point $(2,-3,-1)$ and contains the line

$$
x=3 t-2, \quad y=t+3, \quad z=5 t-3 .
$$

Solution: We need to find two vectors on this plane, so consider the vector from the point ($2,-3,-1$) to the point $(-2,3,-3)$ which lies on the given line (just set $t=0$ in the line equation). This vector is $\langle-4,6,2\rangle$, and the direction vector of the given line is $\langle 3,1,5\rangle$, so the normal vector to the plane is $\langle-4,6,2\rangle \times\langle 3,1,5\rangle=\langle 28,26,-22\rangle$. The equation for the plane is then

$$
28(x-2)+26(y+3)-22(z+1)=0 .
$$

13 Find the line of intersection of the planes $x+y+z=12$ and $2 x+3 y+z=2$.

Solution: Since the line of intersection lies on both planes, it must be orthogonal to both normal vectors. Therefore its direction is given by the cross product of the normal vectors:

$$
\langle 1,1,1\rangle \times\langle 2,3,1\rangle=\langle-2,1,1\rangle .
$$

We also need a point on the line of intersection. To find this, let us set $x=0$ (other choices work equally well). The equations for the first plane becomes $y+z=12$, so $z=12-y$. Substituting this into the equation for the second plane gives $3 y+(12-y)=2$, so $y=-5$. Thus the point $(0,-5,17)$ lies on the line of intersection, so the line is given by

$$
x=-2 t, \quad y=t-5, \quad z=t+17 .
$$

14 Compute the position vector for a particle which passes through the origin at time $t=0$ and has velocity vector

$$
\mathbf{v}(t)=2 t \mathbf{i}+\sin t \mathbf{j}+\cos t \mathbf{k} .
$$

Solution: The position vector is the antiderivative of the velocity vector, so it is

$$
\mathbf{r}(t)=\int \mathbf{v}(t) d t=t^{2} \mathbf{i}-\cos t \mathbf{j}+\sin t \mathbf{k}+\mathbf{C}
$$

where \mathbf{C} is a vector constant of integration. The problem stated that the particle passes through origin at time $t=0$, so need $\mathbf{r}(0)=\mathbf{0}$:

$$
\mathbf{0}=\mathbf{r}(0)=-\mathbf{j}+\mathbf{C} ;
$$

thus $\mathbf{C}=\mathbf{j}$, so we have that

$$
\mathbf{r}(t) t^{2} \mathbf{i}+(1-\cos t) \mathbf{j}-\sin t \mathbf{k} .
$$

15 Show that if a particle moves at constant speed, then its velocity and acceleration vectors are orthogonal. Note that this does not mean that the velocity is 0 ! (Hint: consider the derivative of $\mathbf{v} \cdot \mathbf{v}$.)

Solution: Suppose that the particle's speed is C, so $|\mathbf{v}(t)|=C$. Then we have

$$
\mathbf{v}(t) \cdot \mathbf{v}(t)=C^{2}
$$

so taking the derivates of both sides gives

$$
\mathbf{v}(t) \cdot \mathbf{v}^{\prime}(t)+\mathbf{v}^{\prime}(t) \cdot \mathbf{v}(t)=0
$$

which implies that $\mathbf{v}(t) \cdot \mathbf{v}^{\prime}(t)=\mathbf{v}(t) \cdot \mathbf{a}(t)=0$, as we wanted.

16 Consider the curve defined by

$$
\mathbf{r}(t)=\langle 4 \sin c t, 3 c t, 4 \cos c t\rangle
$$

What value of c makes the arc length of the space curve traced by $\mathbf{r}(t), 0 \leq t \leq 1$, equal to 10 ?
Solution: The arc length from 0 to 1 of this curve is given by

$$
\begin{aligned}
\int_{0}^{1} \text { speed } d t & =\int_{0}^{1} \sqrt{16 c^{2} \cos ^{2} c t+9 c^{2}+16 c^{2} \sin ^{2} c t} d t \\
& =\int_{0}^{1} \sqrt{16 c^{2}+9 c^{2}} d t \\
& =\int_{0}^{1} 5 c d t \\
& =5 c .
\end{aligned}
$$

For this to equal 10 , we want $c=2$.

