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3.3. TAYLOR SERIES

Having explored sequences, series, and power series, we are now ready to return to our
original motivation: Taylor polynomials. Recall that the Taylor polynomial of degree n for
f x centered at x a, Tn x , is the unique polynomial of degree n which matches f x

and its first n derivatives at x a.
Back in Section 1.1, we observed that higher degree Taylor polynomials tended to give

better approximations to f x . Then in Section 1.2 we made this observation precise with
the Remainder Theorem.

The Remainder Theorem. Suppose that f is n 1 times differen-
tiable and let Rn denote the difference between f x and the Taylor
polynomial of degree n for f x centered at a. Then

Rn x f x Tn x
f n 1 c

n 1 !
x a n 1

for some c between a and x.

Now that we have established the notion of series, we are ready to consider Taylor
polynomials of “infinite degree”, which we will call Taylor series . These are a special type
of power series.

Taylor Series. Suppose that the function f x is infinitely differen-
tiable (smooth) at x a. The Taylor series for f x centered at x a

is then

n 0

f n a

n!
x a n.

Assuming that we can compute all the derivatives of f x at x a, this definition is
very concrete, but it leaves some unanswered questions:

Where does the Taylor series for f x converge?
When the Taylor series for f x does converge, does it converge to f x ?

In general, these two questions must be answered on a function-by-function basis, and
such answers revolve around the Remainder Theorem.

Taylor series centered at x 0 are sometimes referred to as Maclaurin series after the Scottish mathemati-
cian Colin Maclaurin (1698–1746).
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For our first case study, we consider the function f x sin x, centered at x 0.
Since the derivatives of sin x repeat in the pattern cos x, sin x, cos x, sin x, the sequence
of derivatives evaluated at x 0 is 1, 0, 1, 0, . . . . Therefore the Taylor series for sin x

centered at x 0 is:

n 0

1 n x2n 1

2n 1 !
x

x3

3!

x5

5!

x7

7!
.

We could apply the Ratio Test to this series (as in Section 3.1) to show that it converges for
all x, but there is a more important question: Does this series converge to sin x for all x?

By the Remainder Theorem, the difference between sin x and its Taylor polynomial of
degree n centered at x 0, Tn x , is

sin x Tn x Rn x
sin n 1 c

n 1 !
xn 1

for some c between 0 and x. Since the derivatives of sinx only take on values between 1

and 1, we have that

Rn x
x n 1

n 1 !
.

We would like to show that the Taylor series for sin x converges to sin x for all x, which is
equivalent to showing that the limit of the remainders Rn x is 0 (as n ). This is really
just an exercise from Section 2.1, although we have delayed it now.

Fact 1. For all values of x, lim
n

x n

n!
0.

Proof. First let us consider a special case, where x 4. In this case, we are interested in the
sequence 4n n! . For the first 4 terms, this sequence is actually increasing:

n 4n n!

0 1

1 4

2 42 2! 8

3 43 3! 10.6666 . . .
4 44 4! 10.6666 . . .

But then the sequence starts decreasing. To get the n 5 term, we multiply the n 4 term by 4 5;
to get the n 6 term we multiply this by 4 6; to get the n 7 term we multiply this by 4 7, and so
on. For n 5, we therefore have the bound

4n

n!

4

5

n 4
44

4!
0 as n .

Our proof for generic x follows the same general approach. Choose an integer m x . We
have, for n m,

x n

n!

x n

n n 1 m 1 m

n m terms, all m x

m 1 !

x n

mn m m 1 !
.
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Ideally we would like to have mn in the denominator, so we multiply top and bottom by mm:

x n

n!

x nmm

mn m 1 !

x n

mn

mm

m 1 !
.

Our goal is to prove that the sequence x n n! converges to 0 by sandwiching it between the
constant sequence 0 and the sequence above.

Remember that m is not changing, so mm m 1 ! is just a constant. Since m x 0, x m

is between 0 and 1, so Example 5 of Section 2.1 shows that the geometric sequence x m n 0.

Therefore, by the Sandwich Theorem, x n n! 0 as n for all values of x.

Our next example collects these observations to show that the Taylor series for sin x
centered at x 0 converges to sin x.

Example 2. Show that the Taylor series centered at x 0 for sin x converges to sin x for all
values of x.

Solution. Proving this statement is equivalent to showing that for any fixed value of x, the
remainder term Rn x tends to 0 as n . Fix a value of x. By the Remainder Theorem,
our previous bounds, and Fact 1,

Rn x sin x Tn x
x n 1

n 1 !
0 as n ,

which is precisely what we wanted to show.

Example 2 is in some sense completely bizarre. Remember that we defined Taylor
polynomials (and therefore series as well) by mathcing derivatives at x a (the center).
Therefore, this example shows that if a power series matches all of the derivatives of sin x

at x 0, then the series is equal to sin x for all values of x. Why should sin x be completely
determined by its derivatives at 0? With our limited tools, the best answer we will be able
to provide here is that sinx is a very well-behaved function; the technical term for such
functions is analytic.

The same approach would work for the function f x cos x, but there is an easier
way. Now that we know that the Taylor series for sin x centered at x 0 converges to sin x

This type of convergence is known as pointwise convergence, because the Taylor series converges to sin x at
each individual point. There is a stronger, more global type of convergence known as uniform convergence.
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for all values of x, we may differentiate it term-by-term to obtain:

cos x
d

dx
sin x

d

dx
n 0

1 n x2n 1

2n 1 !

n 0

1 n 2n 1
x2n

2n 1 !

n 0

1 n x2n

2n !

1
x2

2

x4

4!

x6

6!
.

For our next case study, we consider the function f x ex, again centered at x 0.
Since every derivative of ex is ex itself, f n 0 1 for every n, and thus the Taylor series
centered at x 0 for ex is

n 0

xn

n!
1 x

x2

2

x3

3!

x4

4!
.

Example 3. Show that the Taylor series centered at x 0 for ex converges to ex for all
values of x.

Solution. We want to show that for fixed x, Rn x 0 as n . The Remainder
Theorem shows that

Rn x ex Tn x
ec

n 1 !
xn 1

for some c between 0 and x (here we used the fact that the n 1st derivative of ex is ex

itself). We have to be a little careful here about giving a bound for ec, since the bound
changes depending on whether x is positive or not:

ec ex if x 0,
1 if x 0.

Still, since we are considering a fixed value of x, our bound on ec is just a constant, and
Fact 1 shows that

x n 1

n 1 !
0 as n .

Therefore Rn x 0 as n , proving that the Taylor series for ex centered at x 0

converges to ex for all values of x.
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Substituting x 1 into the Taylor series from Example 3 gives an appealing identity:

e
n 0

1

n!
1

1

1!

1

2!

1

3!
.

Because n! grows so quickly, this series converges to e exceptionally fast. For example,
using just the first 10 terms, we get e correct to six decimal places:

e 2.7182818 . . .
9

n 0

1

n!
2.7182815 . . .

The speed of this convergence (and it really is fast — at n 59, we are adding the reciprocal
of the estimated atoms in the universe, about 10 80) allows us to prove that e is irrational
in Exercises 50–52.

As with general power series, we are allowed to substitute into Taylor series and to
multiply and divide them. This can be quite useful for expressing integrals as power series
(our next example), evaluating limits (Example 5), computing derivatives (Example 6), and
finding Taylor series for quotients (Example 7).

Example 4. Express sin x2 dx as a power series.

Solution. We know from Example 2 that

sin x
n 0

1 n x2n 1

2n 1 !
,

so

sin x2

n 0

1 n x2 2n 1

2n 1 !
n 0

1 n x4n 2

2n 1 !
.

All that remains is to integrate this series term-by-term:

sin x2

n 0

1 n x4n 2

2n 1 !
n 0

1 n x4n 3

4n 3 2n 1 !
C.

It has been proved that the antiderivative of sin x2 dx is not an “elementary function”, so
this one of the nicest possible ways to express this integral.

Example 5. Evaluate lim
x 0

cos x 1 x2
2

x4
.
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Solution. While this example could be solved with l’Hôpital’s Rule, it is easier to use
power series. We know that

cos x
n 0

1 n x2n

2n !
1

x2

2

x4

4!

x6

6!
,

so

cos x 1
x2

2
x4

1
x2

2

x4

4!

x6

6!
1

x2

2

x4

x4

4!

x6

6!
x4

1

4!

x2

6!
.

As x 0, this quantity approaches 1 4! 1 24, so this is the limit.

Example 6. Compute the 102nd derivative of f x e2x3

at x 0.

Solution. Example 3 shows that

ex

n 0

xn

n!
,

so by substitution, we have that

e2x3

n 0

2x3 n

n!
n 0

2nx3n

n!
.

Since this is the Taylor series for f x e2x3

centered at x 0, by the definition of Taylor
series, we know that it is equal to

n 0

f n 0

n!
xn.

Therefore if we are interested in f 102 0 , we need only look at the coefficient of x102. We
get the coefficient of x102 in

n 0

2nx3n

n!

by substituting n 102 3 34, so

234

34!

f102 0

102!
.
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Solving for f 102 0 shows that

f 102 0
234102!

34!
.

We could have solved this problem simply by taking 102 derivatives, but finding the Taylor
series is much easier.

Example 7. Find the first four nonzero terms of the Taylor series centered at x 0 for the
function f x tan x.

Solution. It would be possible to solve this problem by taking derivatives of tan x, but
this approach gets quite messy. An easier method is to use the series we have for sin x and
cos x together with the Division Theorem from Section 3.2. Since

tan x
sinx

cosx

x x3
3! x5

5! x7
7!

1 x2
2! x4

4! x6
6!

,

we can use long division

x x3
3 2x5

15 17x7
315

1 x2
2 x4

24 x6
720 x x3

6 x5
120 x7

5040

x x3
2 x5

24 x7
720

x3
3 x5

30 x7
840

x3
3 x5

6 x7
72

2x5
15 4x7

315

2x5
15 x7

15

17x7
315

to find that the first four nonzero terms of the Taylor series centered at x 0 for tan x are

x
x3

3

2x5

15

17x7

315
.

This is also therefore the Taylor polynomial of tan x of degree 7, centered at x 0.

We can also use the Taylor series for ex to define the function ex for more quantities
than just real numbers. For example, we can define ex for complex numbers x. Recall that
a complex number is a number of the form a bi where a and b are real numbers, and
i is the (imaginary) square-root of 1. This leads to the following formula, which the
Nobel Prize winning physicist Richard Feynman (1918–1988) referred to as “one of the
most remarkable, almost astounding, formulas in all of mathematics”:

Example 8 (Euler’s Formula). Prove Euler’s Formula eiθ cos θ i sin θ.
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Solution. We begin by substituting iθ into the Taylor series for ex:

eiθ

n 0

inθn

n!
n 0

i2nθ2n

2n !
n 0

i2n 1θ2n 1

2n 1 !
.

Now we need to compute the powers of i:

i2 1,

i3 i i2 i,

i4 i2 i2 1 1 1,

i5 i i4 i.

This shows that the powers of i form a periodic sequence i, 1, i, 1, . . . , which allows
us to simplify our series for eiθ above:

eiθ

n 0

1 nθ2n

2n !
i

n 0

1 nθ2n 1

2n 1 !
cos θ i sin θ.

An alternative proof, using derivatives, is outlined in Exercise 45.

A particularly wondrous special case of Euler’s Formula, known as Euler’s Identity, is,

eπi 1 0,

an identity relating five of the most important numbers in all of mathematics. In Exer-
cises 46–49 we use a similar approach to define eM for a matrix M .

Euler’s formula is also a very convenient way to prove various trigonometric identities.
For example, the angle addition formulas, which show how to evaluate sin α β and
cos α β in terms of sin α, sinβ, cos α, and cosβ, have a particularly straightforward
derivation using Euler’s formula. As the French mathematician Jacques Hadamard (1865–
1963) wrote, “the shortest route between two truths in the real domain sometimes passes
through the complex domain.”

Example 9. Derive the angle addition formulas.

Solution. We begin with the trigonometric functions we are interested in, convert to
exponentials, simply the expression, and then convert back to trigonometric functions:

cos α β i sin α β e α β i

eαi eβi

cos α i sin α cos β i sin β

cos α cos β sinα sin β i sin α cos β cos α sin β .
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Now equate real and imaginary parts of both sides to see that

cos α β cos α cos β sin α sin β,

sin α β sin α cos β cos α sin β,

as desired.

We know from Section 3.1 that power series define infinitely differentiable (smooth)
functions when they converge, so not every function is equal to its Taylor series (in fact,
a function much be infinitely differentiable for us to even define its Taylor series). Our
success in this section and the last with finding Taylor series for infinitely differentiable
functions suggests a final question:

Is every infinitely differentiable function equal to its Taylor seres?

The answer is no. A counterexample is provided by the function

f x
e 1 x2

if x 0,
0 if x 0,

whose plot is shown below.

1

1 212

It is possible (using l’Hôpital’s Rule) to establish that every derivative of this function
at x 0 is 0, so therefore its Taylor series is simply 0, which does not converge to this
function. Therefore, infinite differentiability is a necessary condition for a function to equal
its Taylor series, but it is not a sufficient condition.
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EXERCISES FOR SECTION 3.3

Derive Taylor series for the functions in Exercises 1–
8 at the specified centers.

1. f x sin 2x centered at x 0

2. f x cosx centered at x π 2

3. f x x2 cos 2x3 centered at x 0

4. f x ex 2 centered at x 0

5. f x 2xex centered at x 0

6. f x 2xex centered at x 1

7. f x sinh x
ex e x

2
centered at x 0

8. f x cosh x
ex e x

2
centered at x 0

Compute the limits in Exercises 9–16 using Taylor
series.

9. lim
x 0

sin x x

x3

10. lim
x 0

x arctan x

x3

11. lim
x 0

ex e x

x

12. lim
x 0

sin x arctan x

x3

13. lim
x 0

2 2 cos x 3

x6

14. lim
x 0

ln 1 x3

x3

15. lim
x 0

sin x x 2

cos 5x 1 3

16. lim
x 0

sin 3x 3x 2

e2x 1 2x 3

Use Taylor series of known functions to evaluate the
sums in Exercises 17–20.

17.
n 0

1
n π2n

2n !

18.
n 0

1
n π2n 1

2n 2n 1 !

19.
n 0

1
n πn

n!

20.
n 0

7
n π2n

2n !

Derive Taylor series for the integrals in Exer-
cises 21–24 (centered at x 0). Note that none of
these integrals has an answer in terms of elemen-
tary functions.

21.
cos x3 1

x2
dx

22.
sin x

x
dx

23. e
x2

2 dx

24.
ln x 1

x
dx

Use the Remainder Theorem in Exercises 25–30.

25. Give an upper bound on the error when us-
ing T3 x 1 x x2 2 x3 6 to approximate
f x ex for 0 x 1 2.

26. Give an upper bound on the error when us-
ing T1 x x to approximate f x tanx for

π 4 x π 4.

27. Give an upper bound on the error when using
T3 x 1 2 x 1 3 x 1 2 4 x 1 3 to
approximate f x 1 x2 for 3 4 x 5 4.

28. Give an upper bound on the error when using
T2 x 2 x 4 4 x 4 2 64 to approximate
f x x for 4 x 4.1.

29. Give an upper bound on the error when using
T3 x x 1 x 1 2 2 x 1 3 6 to approx-
imate f x x ln x for 1 2 x 3 2.

30. Give an upper bound on the error when using
T4 x x x2 2 x3 3 x4 4 to approximate
f x ln 1 x for 0 x 1.

31. Prove that xn n! 0 as n for every fixed
value of x. (Note that this is a bit stronger than
Fact 1.)
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For Exercises 32–35, give the Taylor polynomials of
degree 8 (centered at x 0) for the specified func-
tions.

32. f x ecos x4

33. f x 1 x x2 sin x3

34. f x
sin x

1 2x

35. f x ln cos x

Exercises 36–39 investigate another way to bound
the error in using Taylor polynomials to approxi-
mate functions. Consider first the example of using
T3 x 1 x x2 2 x3 6 to approximate e1 2. We
could of course use the Remainder Theorem for this
problem (as is requested in Exercise 25), but since
we know that

e1 2
1 1 2

1 2
2

2

1 2
3

6
n 4

1 2
n

n!
,

another way to estimate this error is simply to
bound the tail by comparing it to a geometric series:

n 4

1 2
n

n!

1 2
4

4!

1 2
5

5!

1 2
6

6!

1 2
4

4!

1 2
5

4 4!

1 2
6

42 4!

1 2
4

4!
1

1 2

4

1 2

42

1 2
4

4!

1

1
1 2

4

.

(This gives an error estimate of about 0.003,
whereas the Remainder Theorem shows that the er-
ror is at most 0.004.)

36. Bound the error involved in using the Taylor
polynomial of degree 5 to approximate sin x near
x 1 2 without using the Remainder Theorem.

37. Bound the error involved in using the Taylor
polynomial of degree 5 to approximate

1

0

e
x2

2 dx

without using the Remainder Theorem.

38. Show that the Remainder Theorem cannot give
any practical bounds on the error involved in ap-
proximating f x ln 1 x at x 1 2 by its Tay-
lor polynomial of degree 3, T4 x x x2 2 x3 3.

39. Give a bound on the error involved in the esti-
mate in Exercise 38 by observing that

R3
1 2

1 2
4

4

1 2
5

5

1 2
6

6

1 2
4

4
1 1 2 1 2

2 .

Exercises 40 and 41 concern the series

n 2

πn

n!
.

40. Compute the 10th partial sum of this series.

41. Prove that the sum of this series is not 19.

42. Use Euler’s formula to prove the two identities

cos θ
eiθ e iθ

2
,

sin θ
eiθ e iθ

2i
.

43. Use Euler’s formula to prove De Moivre’s For-
mula,

cos θ i sin θ n
cosnθ i sin nθ.

for all integers n.

44. Give an example showing that De Moivre’s
Formula does not necessarily hold when n is not an
integer.

45. Define

f θ cos θ i sin θ e iθ.

Compute the derivative of f θ and use this to give
another proof of Euler’s Formula.

As with complex numbers, we also use the Taylor
series for ex to define eM for matrices square M as

I M
M2

2!

M3

3!
,

where I denotes the identity matrix (which has 1s
along the diagonal and 0s everywhere else). Use
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this to compute eM for the matrices in Exercises 46–
49.

46. M
1 0

0 1

47. M
1 0

0 1

48. M
1 2

0 1

49. M
1 1

0 1

Suppose that e were a rational number, so e a b

for positive integers a and b. In Exercises 50–52 we
will draw a contradiction, thereby proving that e is
irrational. This proof is often attributed to Charles
Hermite (1822–1901).

50. Define

an n! e
n

k 0

1

k!
,

and prove that an is an integer for all n b.

51. Show that an
1

n 1

1

n 1 n 2
.

52. Show that 0 an 1, and therefore an can not
be an integer, contradicting our assumption that e is
rational.

Is there an irrational number which raised to an ir-
rational power is rational? Exercise 54 proves that
there is, although it doesn’t tell us precisely what it
is. I thank Professor Steven Landsburg for making
me aware of these problems.

53. Verify that 2
2

2

2. (One method is to take
the logarithm of both sides.)

54. Using the result of the previous exercise and the
fact that 2 is irrational, prove that there is an irra-
tional number which raised to an irrational number
is rational.

Exercises 55–59 present Euler’s original computa-
tion of 1 n2, from 1735. While this proof was
considered a breakthrough at the time, Euler mis-
takenly assumed that he could apply a fact about

polynomials to power series (see Exercise 58). The
fact he assumed, however, does not hold for ar-
bitrary series, as Exercise 59 shows. It was not
until about 150 years later that Karl Weierstrass
(1815–1897) “corrected” this proof by proving the
Weierstrass Factorization (or, Product) Theorem. It
should also be noted that Euler gave two other cor-
rect proofs for this calculation in the same paper,
and a fourth proof in 1741, but his “incorrect” proof
is the one that is best remembered. As the American
author Henry Mencken (1880–1956) wrote, “For ev-
ery problem, there is one solution which is simple,
neat, and wrong.”

55. Find a series centered at 0 which is equal to

f x
sin x

x

for x 0.

56. Find all the roots of the power series from Ex-
ercise 55. This should involve two steps; first show
that this series has no negative roots, and then find
all the positive roots, which are (by the previous
problem) also roots of

f x
sin x

x
.

57. If a polynomial of degree 3 has roots r1, r2, and
r3, then it is given by p x c x r1 x r2 x r3

for some constant c. By expanding this product, ver-
ify that

1

r1

1

r2

1

r3

coefficient of x

constant term
.

(This generalizes to polynomials of any degree.)

58. Assume, as Euler did, that Exercise 57 holds for
series to show that

1

r1

1

r2

1

r3

1

6

where r1, r2, r3, . . . are the roots from Exercise 56.

Conclude that
n 1

1

n2

π2

6
.

59. The function f x 2 1 1 x has a sin-
gle root, x 1 2. Derive its power series (centered
at x 0) and conclude that, contrary to Euler’s as-
sumption, Exercise 57 cannot be applied to arbitrary
series.
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ANSWERS TO SELECTED EXERCISES, SECTION 3.3

1.
n 0

1
n 2x 2n 1

2n 1 !
n 0

1
n 22n 1x2n 1

2n 1 !

3. x2

n 0

1
n 2x3 2n

2n !
x2

n 0

1
n 2nx6n

2n !
n 0

1
n 2nx6n 2

2n !

5. 2x
n 0

xn

n!
n 0

2
xn 1

n!

7. 1

2

n 0

xn

n!

1

2
n 0

x n

n!
n 0

x2n 1

2n 1 !

9. The series is
1

3!

x2

5!

x4

7!
, so the limit is 1 3! 1 6.

11. The series is 2
2x2

3!

2x4

5!
, so the limit is 2.

13. The series is 1
x2

4
, so the limit is 1.

15. The series is
2

140625

41x2

468750
, so the limit is 2 140625.

17. cos π 0

19. e π

21.
n 1

1
n x6n 2

2n !
dx

n 1

1
n x6n 1

6n 1 2n !
C

23.
n 0

1
n x2n

2nn!
dx

n 0

1
n x2n 1

2n 2n 1 n!
C


