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3.2. MANIPULATION AND DERIVATION

We concluded the previous section by noting that power series can be differentiated and
integrated term-by-term (within their radii of convergence). This is quite a strong prop-
erty of power series (which does not hold for series in general). We begin this section by
showing that term-by-term differentiation and integration can be used to find power series.

Our starting point will always (in this section, at least) be a geometric series of some
kind, the simplest example of such being

n 0

xn 1

1 x
for x 1,

which we know from our study of geometric series in Section 2.3. By differentiating (term-
by-term) both sides of this equation, we obtain our first new power series:

n 0

nxn 1 d

dx

1

1 x

1

1 x 2
for x 1.

This is one of the three basic forms of power series we derive in this section. The other two
are given in Examples 1 and 2.

Example 1. Find the power series centered at x 0 for ln 1 x and its radius of conver-
gence.

Solution. Recall that ln 1 x is the antiderivative of 1 1 x :

1

1 x
dx ln 1 x .

Furthermore, we can express 1 1 x as a geometric power series (for x 1):

1

1 x

1

1 x
n 0

x n

n 0

1 nxn.

Therefore, all we have to do to get the power series for ln 1 x is integrate this series
term-by-term,

ln 1 x
1

1 x
dx

n 0

1 nxn

n 0

1 n xn 1

n 1
C.
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But what is C , the constant of integration? To find C we substitute x 0 into both sides.
We know that ln 1 0 ln 1 0, so C 0. This gives

n 0

1 n xn 1

n 1
.

The geometric series we integrated had radius of convergence R 1, so the radius of
convergence of this series for ln 1 x is also R 1.

The power series for ln 1 x that we found in Example 1 is known as the Mercator
series, after Nicholas Mercator (1620–1687). Note that by substituting x 1 into this series,
we obtain

ln 2

n 0

1 n

n 1
n 1

1 n 1

n
?

This seems to indicate that the sum of the alternating harmonic series is ln 2. However,
there is a problem with this line of reasoning: term-by-term integration is only guaranteed
to work inside the interval of convergence, and x 1 is an endpoint of the interval of
convergence for the Mercator series. Nevertheless, this computation can be made rigorous,
as shown by Abel, see Exercise 33. (Another proof of this result, using Euler’s constant γ

is given in Exercises 46 and 47 of Section 2.4.)
We move on to another example of using integration to derive a power series.

Example 2. Find the power series centered at x 0 for arctan x and its radius of conver-
gence.

Solution. For this we need to recall that

arctan x
1

1 x2
dx.

Again, we can write 1 1 x2 as a geometric power series (for x 1):

1

1 x2

1

1 x2
n 0

x2 n

n 0

1 nx2n.

Now we integrate this series term-by-term:

arctan x
1

1 x2
dx

n 0

1 nx2n

n 0

1 n x2n 1

2n 1
C.
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Finally, we substitute x 0 into both sides of this equation to see that C 0, giving

arctan x
n 0

1 n x2n 1

2n 1
for x 1.

The geometric series we integrated had radius of convergence R 1, so the radius of
convergence of this series for arctan x is also R 1.

As in Example 1, this series suggests an intriguing equality:

π

4
arctan 1

n 0

1 n

2n 1
?

But once again, x 1 lies on the endpoint of the interval of convergence for this series, so
this equation does not necessarily follow from what we have done. Nevertheless, as with
the previous example, this can be made precise using Abel’s Theorem, see Exercise 34.
(This is called the GregoryLeibniz formula for π, after Gottfried Leibniz (1646–1716) and
James Gregory (1638–1675)).

But what if we wanted power series for ln 1 3x2 or arctan 2x3? We could write them
as integrals and then integrate some form of geometric power series as in Examples 1 and
2, but this is tedious and error-prone. More worryingly, what about more complicated
functions like ln 1 x 1 2x ?

Just as with differentiation and integration, it turns out that within their radii of conver-
gence we may treat power series just like polynomials when

• substituting,

• multiplying, and

• dividing.

Here even stating the theorems is technical; we instead illustrate the point with examples.

Example 3. Find the power series centered at x 0 for
1

1 8x3 2
.

Solution. We know from the beginning of the section that

1

1 x 2
n 0

nxn 1 for x 1,

so to get the power series for 1 1 8x3 2, we simply replace x with 8x3:

1

1 8x3 2
n 0

n 8x3 n 1

n 0

n8n 1x3n 3.
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As the power series for 1 1 x 2 held when x 1, this power series holds when 8x3 1,
which simplifies to x 1 2.

Example 4. Find the power series centered at x 0 for ln 4 3x2 .

Solution. First we need to get the function in the form ln 1 something :

ln 4 3x2 ln 4 1
3x2

4
ln 4 ln 1

3x2

4
.

Now we substitute 3x2 4 into the power series we found for ln 1 x in Example 1:

ln 4 ln 1
3x2

4
ln 4

n 0

1 n

3x2

4

n 1

n 1
ln 4

n 0

1 n 3n 1x2n 2

4n 1 n 1
.

Note that our series for ln 1 x was valid for x 1, so this new series is valid for
3x2 4 1, or x 4 3.

Example 5. Find the power series centered at x 0 for
arctan 2x3

x3
dx.

Solution. First we substitute 2x3 into our power series for arctanx from Example 2 to
find a power series for arctan 2x3:

arctan 2x3

n 0

1 n 2x3 2n 1

2n 1
n 0

1 n 22n 1x6n 3

2n 1
.

Now we divide each of the terms of this series by x3 and integrate term-by-term:

arctan 2x3

x3
dx n 0

1 n 22n 1x6n 3

2n 1

x3
dx

n 0

1 n 22n 1x6n

2n 1
dx

n 0

1 n 22n 1x6n 1

2n 1 6n 1
C.

Since our series for arctan x was valid for x 1, this series is valid for 2x3 1, or

x 3 1 2.
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In practice, it can be quite tedious to find many coefficients by multiplication. However,
the first few coefficients are the most important.

Example 6. Compute the first four nonzero terms of the power series for
ln 1 x

1 2x
.

Solution. We simply need to multiply the geometric power series for 1 1 2x with the
power series for ln 1 x that we found in Example 1:

ln 1 x

1 2x
1 2x 4x2 8x3 x

x2

2

x3

3

x4

4

x
5x2

2

16x3

3

131x4

12

Since the series for 1 1 2x has radius of convergence 1 2 and the series for ln 1 x

has radius of convergence 1, the radius of convergence of their product is the minimum of
these two values, 1 2.

In the next section we use division to derive the power series for tan x. In order to show
how division works in this section, we repeat the previous example, dividing instead of
multiplying.

Example 7. Use division to compute the first four nonzero terms of the power series for

the function f x
ln 1 x

1 2x
.

Solution. We use long division to divide the power series for ln 1 x by 1 2x:

x 5x2
2 16x3

3 131x4
12

1 2x x x2
2 x3

3 x4
4

x 2x2

5x2
2 x3

3 x4
4

5x2
2 5x3

16x3
3 x4

4

16x3
3 32x4

3

131x4
12

Note that this agrees with our computation in the previous example.
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EXERCISES FOR SECTION 3.2

Find power series centered at x 0 for the func-
tions in Exercises 1–16 and give their radii of con-
vergence.

1. f x
1

1 x

2. f x
2

3 x

3. f x
3

1 x3

4. f x
4

2x3 3

5. f x
2

1 x 2

6. f x
x

1 x 2

7. f x
x2

1 x5 2

8. f x
2

4 2x2 2

9. f x ln 1 x

10. f x ln 1 2x3

11. f x ln e e2x2

12. f x x2 arctan 3x3

13. f x arctan x 2

14. f x
arctan x

1 x

15. f x 1 x ln 1 x

16. f x ln 1 x 1 x ln 1 x 1 x

17. Show that
n 1

1

n2n
ln 2. Hint: try substituting

an appropriate value of x into the series for ln 1 x .

18. Use division of power series to give another
proof that

1

1 x
n 0

xn

for x 1.

Exercises 19 and 20 explore the Fibonacci numbers.

19. Define

f x
n 0

fnxn,

where fn denotes the nth Fibonacci number. Use
the recurrence relation and initial conditions for
fn to show that

f x 1 xf x x2f x ,

and derive from this that

f x
1

1 x x2
.

20. Use Exercise 19, partial fractions, and geometric
series to derive Binet’s formula.

Use partial fractions and geometric series to find
formulas for the coefficients of the functions in Ex-
ercises 21–24.

21. f x
x

1 5x 6x2

22. f x
2 5x

1 5x 6x2

23. f x
x

1 3x 2x2

24. f x
244 246x

1 4x 3x2

25. Using the fact that

ln 1 x
n 1

xn

n
for x 1,

show that

lim
x 1

n 1

xn

n
,

thereby proving (again) that the harmonic series di-
verges.

26. Let an be a series with partial sums sn and
suppose that the function

f x
n 0

anxn

converges for x 1. Prove that

n 0

snxn f x

1 x
.
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27. The harmonic numbers Hn are defined by
Hn 1 1 2 1 3 1 n. Show that

n 1

Hnxn 1

1 x
ln

1

1 x
.

The sequence an is said to be Abel summable to L
if anxn converges on (at least) the interval 0, 1

and
lim

x 1

anxn L.

(Note that the first term of these sequences is a0.)
In Exercises 28–32 consider Abel summability. This
concept is due to Niels Henrik Abel (1802–1829).

28. Show that the sequence 2 n is Abel
summable to 2.

29. Show that 1 n is Abel summable to 1 2.
(C.f. Exercise 50 from Section 2.2.)

30. Show that
1 n

n 1
is Abel summable to ln 2.

31. Show that 1 n 1n is Abel summable to 1 4.
(C.f. Exercise 51 in Section 2.2.)

32. Show that 1 nn n 1 is Abel summable
to 1 4.

Abel’s Theorem guarantees that convergent series
are Abel summable to their true values:

Abel’s Theorem. If the series an converges to a
finite value L, then an is Abel summable to L.

Assume the truth of Abel’s Theorem in Exercises 33
and 34.

33. Show that
n 1

1 n 1

n
ln 2.

34. Show that 4

n 0

1 n

2n 1
π.

35. Exercise 33 shows that

n 1

1 n 1

n
ln 2

(this is also proved in Exercises 46 and 47 of Sec-
tion 2.4), while Exercise 17 gives a different series
that converges to ln 2. Which of these two series
converges “faster”?

In 1995, after a several month long search by com-
puter, Bailey, Borwein, and Plouffe discovered a re-
markable formula for π which allows one to com-
pute any binary or hexadecimal digit of π without
computing any of the digits that come before it. For
details about how the formula was discovered, we
refer the reader to the book Mathematics by Experi-
ment by Borwein and Bailey. Exercises 36–38 estab-
lish the formula.

36. Show that

1 2

0

4 2 8x3 4 2x4 8x5

1 x8
dx π.

Hint: Once we substitute u 2x, the integral be-
comes

1

0

16u 16

u4 2u3 4u 4
du,

which, using partial fractions, is equal to

1

0

4u

u2 2
du

1

0

4u 8

u2 2u 2
du.

The first integral requires another substitution,
while the second must be split into two integrals.
One can be evaluated by substitution, the other can
be done by writing u2 2u 2 as u 1 2 1.

37. Let k be a fixed integer less than 8. Show that

1 2

0

xk 1

1 x8
dx

1

2k 2

n 0

1

16n 8n k
.

38. Use Exercises 36 and 37 to show that π is equal
to

n 0

1

16n

4

8n 1

2

8n 4

1

8n 5

1

8n 6
.

This is the Bailey-Borwein-Plouffe formula for π.
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ANSWERS TO SELECTED EXERCISES, SECTION 3.2

1.
n 0

1
nxn

3.
n 0

3x3n

5.
n 0

2n 1
nxn 1

7.
n 0

1
nnx5n 3

9.
n 0

xn 1

n 1

11. 1

n 0

en 1x2n 2

n 1

13.
n 0

1
n x2n 1

22n 1 2n 1


