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2.7. THE ALTERNATING SERIES TEST

We have focused almost exclusively on series with positive terms up to this point. In
this short section we begin to delve into series with both positive and negative terms,
presenting a test which works for many series whose terms alternate in sign.

The Alternating Series Test. Suppose that the sequence bn sat-
isfies the three conditions:

• bn 0 for sufficiently large n,

• bn 1 bn for sufficiently large n (i.e., bn is monotonically
decreasing), and

• bn 0 as n .

Then the alternating series

n 1

1 n 1bn b1 b2 b3 b4

converges.

While we have stated the test with 1 n 1, it of course applies if the terms involve
1 n instead (or cos nπ, since this is just a convoluted way to write 1 n). Also, notice

that the Alternating Series Test can not be used to show that a series diverges (see Exam-
ple 2).

Proof of the Alternating Series Test. Assume that the sequence bn is positive and decreasing
for all n, and that it has limit 0. By the Tail Observation of Section 2.2, if we can prove that these
series converge, the full Alternating Series Test will follow.

Let sn denote the nth partial sum of this series. We have

s2n b1 b2 b3 b4 b2n 1 b2n .

Because bn is monotonically decreasing, b2n 1 b2n 0 for all n, so this shows that s2n is mono-
tonically increasing. We can also write

s2n b1 b2 b3 b4 b5 b2n 2 b2n 1 b2n,

so since b2n 2 b2n 1 0, s2n b1. Thus the sequence s2n has a limit by the Monotone Con-
vergence Theorem. Let L lim

n
s2n. Now we consider the odd partial sums: s2n 1 s2n b2n 1,

so
lim

n
s2n 1 lim

n
s2n lim

n
bn L,
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because bn 0 by our hypotheses. Since both the even and odd partial sums converge to the same

value, the sum of the series exists.

Example 1 (The Alternating Harmonic Series, again). Show that the alternating harmonic
series

n 1

1 n 1

n

converges using the Alternating Series Test.

Solution. The sequence 1 n is positive, monoton-
1

an

sn

ically decreasing, and has limit 0, so the alternating
harmonic series converges by the Alternating Series
Test.

Example 2. Does the series
n 1

1 n 1 2n 3

3n 4
con-

verge or diverge?

Solution. This series does alternate in sign, and 2n 3 3n 4 is decreasing, but

2n 3 3n 4 2 3 0,

so the series diverges by the Test for Divergence.

Note that in the solution of Example 2, we did not appeal to the Alternating Series
Test, but instead used the Test for Divergence. The Alternating Series Test never shows that
series diverge.

Example 3. Show that the series
n 1

1 n 4n2

n3 9
con- 1

1 2 3 4 5 6 7 8 9 10

4n2

n3 9

bn

verges.

Solution. This series alternates in sign, and 4n2 n3

9 0, but it is not immediately obvious that the se-
quence 4n2 n3 9 is decreasing. Indeed, its first
three terms are increasing, as indicated in the plot. Of course, we only need the sequence
to be monotonically decreasing for large n. To check this condition, we take a derivative:

d

dx

4x2

x3 9

x3 9 8x 4x2 3x2

x3 9 2

4x4 72x

x3 9 2
.

This fraction is negative for large x, so the sequence 4n2 n3 9 is decreasing for large
n. Therefore the series converges by the Alternating Series Test.
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The proof of the Alternating Series Test implies the following very simple bound on
remainders of these series.

The Alternating Series Remainder Estimates. Suppose that the
sequence bn satisfies the three conditions of the Alternating Series
Test:

• bn 0,

• bn 1 bn, and

• bn 0 as n

for all n N . Then if n N , the error in the nth partial sum of
1 n 1bn is bounded by bn 1:

sn

n 1

1 n 1bn bn 1.

Example 4. How many terms of the alternating series must we add to approximate the
true sum with error less than 1 10000?

Solution. Since the alternating harmonic series 1 n 1 n satisfies the conditions of the
Alternating Series Test for all n 0, the Remainder Estimates show that

sn

n 1

1 n 1

n

1

n 1
.

Therefore, if we want the error to be less than 1 10000, we need

Error
1

n 1

1

10000
,

so we need n 9999, or in other words, n 10000.
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EXERCISES FOR SECTION 2.7

In Exercises 1–12, determine if the given series con-
verge or diverge.

1.
n 1

1 n

n4 7

2.
n 1

1 nn

n!

3.
n 1

2 n

3n

4.
n 1

3 n

2n

5.
n 1

1 n 1 n 1

n

6.
n 2

1 n 1

ln n

7.
n 2

1 n ln n

n

8.
n 1

n n

n2

9.
n 1

n n

n3n

10.
n 1

1 n

arctan n

11.
n 1

1 n 1 n2

n3 1

12.
n 1

2

n

3n

For Exercises 13–16, first determine if the given se-
ries satisfies the conditions of the Alternating Series
Test. Then, if the series does satisfy the conditions,
decide how many terms need to be added in order
to approximate the sum to within 1 1000.

13.
n 1

1 n sin n

n6 1

14.
n 1

1 n

n 1

15.
n 1

1 n

n! 2

16.
n 1

1 n 1

n

2

Exercises 17–19 verify that the hypotheses of the Al-
ternating Series Test are all necessary, in the sense
that if any of them is removed, then the statement
becomes false.

17. Construct a sequence bn which is monotoni-
cally decreasing with limit 0 such that 1 n 1bn

diverges. (I.e., bn needn’t be positive.)

18. Construct a sequence bn which is positive and
monotonically decreasing such that 1 n 1bn

diverges. (I.e., bn needn’t have limit 0.)

19. Construct a sequence bn which is positive
with limit 0 such that 1 n 1bn diverges. (I.e.,
bn needn’t be monotonically decreasing.)

Dirichlet’s Test, due to Johann Peter Gustav Leje-
une Dirichlet (1805–1859), is a strengthening of the
Alternating Series Test (as shown in Exercise 23).

Dirichlet’s Test. If bn is a positive, eventually
monotonically decreasing sequence with limit 0 and
the partial sums of the series an are bounded,
then anbn converges.

Exercises 20–22 ask you to develop the proof of this
theorem, while Exercises 23–27 ask you to apply the
test.

20. Let sn a1 a2 an. Use the fact that
sn sn 1 an to prove

n m 1

anbn smbm 1

n m 1

sn bn bn 1 .

(This formula is often referred to as summation by
parts.)

21. Let an and bn be sequences satisfying the
hypotheses of Dirichlet’s Test. Use Exercise 20 to



90 CHAPTER 2 INFINITE SERIES

show that if the partial sums of the sequence an

are at most M then

n m 1

anbn 2M bm 1 .

22. Use Exercise 21 to prove Dirichlet’s Test.

23. Show that Dirichlet’s Test implies the Alter-
nating Sign Test.

24. Suppose that an 2, 4, 1, 3, 2, 4, 1, 3, . . .
and that bn

1 n. Does anbn diverge, converge
absolutely, or converge conditionally?

25. Use the angle addition identity

cos α β cosα cos β sin α sin β.

to derive the identity

2 sin α sin β cos α β cos α β .

26. Use the identity derived in Exercise 25 to show
that

2 sin π 4

m

n 1

sin n
m

n 1

cos n π 4 cos n π 4 ,

then show that this is equal to cos π 4 cos m π 4 .

27. Use Exercise 26 to show that the partial sums
of sin n are bounded, and then conclude from
Dirichlet’s Test that the series

n 1

sin n

n

converges.
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ANSWERS TO SELECTED EXERCISES, SECTION 2.7
1. Converges by the Alternating Series Test

3. Converges by the Alternating Series Test

5. Diverges by the Test for Divergence:
n 1

n
1 0

as n .

7. Converges by the Alternating Series Test

9. Converges by the Alternating Series Test

11. Converges by the Alternating Series Test. To see that bn is decreasing for sufficiently large n, take a
derivative.

13. Alternating Series Test not applicable.

15. The Alternating Series Test is applicable. Using n 4 will work to approximate the sum to within
1 1000, because

1

5! 2

1

14400

1

1000
.
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2.8. ABSOLUTE VS. CONDITIONAL CONVERGENCE

We are now ready to examine the strange behavior of the alternating harmonic series we
first observed in Section 2.2. Remember that we showed that the alternating harmonic
series converged and then we went on to bound its sum. For a lower bound, we grouped
the terms in pairs, observing that

n 1

1 n 1

n
1

1

2

1

3

1

4

1

5

1

6

1

7

1

8

1
1

2

1

3

1

4

1

5

1

6

1

7

1

8

1
1

2
1

2
.

While for an upper bound, we group the terms in different pairs, showing that

n 1

1 n 1

n
1

1

2

1

3

1

4

1

5

1

6

1

7

1

8

1
1

2

1

3

1

4

1

5

1

6

1

7

1
1

2

1

3
5

6
0.8333 . . . .

(In fact, that true sum is ln 2 0.69315, see Exercises 46 and 47 of Section 2.4 or Exercise 24
of Section 3.2.)

Then we showed in Example 5 of Section 2.2 that by rearranging the terms of this series,
we could get it to converge to a different sum:

n 1

1

4n 3

1

4n 1

1

2n
1

1

3

1

2

1

5

1

7

1

4

389

420

9

10
.

Our first order of business in this section is to explore this phenomenon:

When are we allowed to rearrange the terms of a series without changing the sum?

We begin by looking at series with positive terms. If an is a convergent series with
positive terms, are we allowed to rearrange the terms without changing the sum? Suppose

bn is such a rearrangement, and consider the partial sums of each series,

sn a1 a2 a3 ,

tn b1 b2 b3 .
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We would like to figure out if an bn which, by the very definition of series summa-
tion, is equivalent to lim

n
sn lim

n
tn. Because an and bn are positive sequences, the

sequences of partial sums sn and tn are both increasing. Now consider any value of
n. Since the sequence bn is a rearrangement of the sequence an , there must be some
number N so that each of the terms

a1, a2, . . . , an

occurs in the list

b1, b2, . . . , bN .

Since all the terms are positive, for this value of N , we have

sn a1 a2 an b1 b2 bN tN .

This shows that every partial sum of an is less than or equal to some partial sum of bn.
Of course, the same argument works with the roles of an and bn interchanged, so every
partial sum of bn is less than or equal to some partial some of an. This implies that the
two series converge to the same value.

So we have made some progress: convergent series with positive terms can be rear-
ranged without affecting their sums, but rearranging the alternating harmonic series can
affect its sum. What is the difference between these two examples?

Intuitively, there are two different ways for a series to converge. First, the terms could
just be really small. Indeed, this is the only way that a series with positive terms can
converge. But then there is a second way, illustrated by the alternating harmonic series:
the terms could cancel each other out. Our next definition attempts to make precise the
notion of series that converge “because their terms are really small.”

Absolute Convergence. The series an is said to converge abso-
lutely if an converges.

The first thing we should verify is that absolutely convergent series actually, well, con-
verge. Our next theorem says even more: rearrangements don’t affect the sum of an abso-
lutely convergent series.

The Absolute Convergence Theorem. If an converges abso-
lutely, then an converges. Moreover, every rearrangement of an

converges to the same sum.
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This first part of this theorem — that absolutely convergent series converge — follows
from the Comparison Test and some basic facts about series, see Exercises 25–26. The
second part is more complicated, and we omit its proof.

While we have defined absolute convergence in order to investigate rearranging series,
this notion is very useful on its own. Consider the series

n 1

1 n 1

n2
.

Even though this series is very much like 1 n2, it is not a p-series, so we can’t apply the p-
series Test to it. Similarly, we can’t apply the Integral Test or the Comparison Test, because
those tests require series to have positive terms. However, it is easy to see that this series
is absolutely convergent, from which it follows that the series converges by the Absolute
Convergence Theorem:

Example 1. Show that the series
n 1

1 n 1

n2
converges absolutely.

Solution. The series

n 1

1 n

n2
n 1

1

n2

is a convergent p-series, so
n 1

1 n

n2
converges absolutely by the Absolute Convergence

Theorem.

Our next example is another stereotypical use of the Absolute Convergence Theorem.
In general when trigonometric functions appear in a series, we need to test for absolute
convergence and then make a comparison.

Example 2. Show that the series
n 1

sinn

n3 1
converges absolutely.

Solution. First we take the absolute values of the terms,

n 1

sin n

n3 1 n 1

sinn

n3 1
.

We may use any test we like on this series (although some, like the Ratio Test in this exam-
ple, might not tell us anything). Because sinn 1, n3 1 n3 n3 2, and the terms
of this series are positive, we can compare it:

n 1

sinn

n3 1 n 1

1

n3 2
.
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Therefore,
n 1

sinn

n3 1
is convergent by comparison to a convergent p-series, so

n 1

sin n

n3 1

is absolutely convergent by the Absolute Convergence Theorem.

We’ve identified a special type of convergent series, the absolutely convergent series.
But what about the others? Intuitively, these are the series which converge only because
their terms happen to cancel each other out. These series are called conditionally conver-
gent.

Conditional Convergence. The series an is said to converge con-
ditionally if an converges but an diverges.

If you want to show that the series an is conditionally convergent, it is important
to note that this requires two steps. First you must show that an converges, and sec-
ond, you must show that an is not absolutely convergent (in other words, that an

diverges). Our first example of a conditionally convergent series should not come as a
surprise.

Example 3 (The Alternating Harmonic Series, last time). Show that the alternating har-
monic series

n 1

1 n 1

n

is conditionally convergent.

Solution. The alternating harmonic series converges
1

an

sn

by the Alternating Series Test because the sequence
1 n is monotonically decreasing, positive, and has

limit 0.
The alternating harmonic series does not converge

absolutely because

n 1

1 n 1

n
n 1

1

n

(the harmonic series) diverges. Therefore the alternating harmonic series is conditionally
convergent.

Example 4. Show that the series
n 1

1 n 4n2

n3 9
converges conditionally.
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Solution. We saw in Example 3 of the previous section that this series converges, so we
only need to show that it does not converge absolutely. To test for absolute convergence,
we take the absolute value:

n 1

1 n 4n2

n3 9
n 1

4n2

n3 9
.

There are at least two different ways to show that this series diverges.
With the Integral Test: We must evaluate the integral

1

4x2

x3 9
dx lim

b

b

1

4x2

x3 9
dx.

Setting u x3 9 gives du 3x2 dx, so dx du 3x2. Making these substitutions leaves
us with

lim
b

x b

x 1

4

3u
du lim

b

4

3
ln u

x b

x 1

lim
b

4

3
ln b3 9

4

3
ln 10 ,

so the series diverges by the Integral Test.
With the Comparison Test: Here we can use the bound

4x2

x3 9

4x2

x3 9x3

4

10x

to see that the series diverges by comparison to 4 10 1 n.

We’ve seen one example of how by rearranging the terms of the alternating harmonic
series we can change its sum. What if we wanted to rearrange the series to make it sum
to a specific number? Would that be possible? Yes! We begin with a specific example, and
then discuss how to generalize this example.

Example 5. Rearrange the terms of the alternating harmonic series to get a series which
converges to 1.

Solution. The positive terms of this series are

1 1 3 1 5 1 7 1 9

while the negative terms are

1 2 1 4 1 6 1 8 1 10 .

Note that both of these series diverge. By our Tail Observation of Section 2.2, this means
that all tails of these series diverge as well.
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Now, how are we going to rearrange the series to make it sum to 1? First, we make the
series sum to more than 1:

1 1 3 1.3333 . . . 1.

Next we use negative terms to make the series sum to less than 1:

1 1 3 1 2 0.8333 . . . 1.

Then we use as many of the positive terms that we haven’t used yet to make the series sum
to more than 1 again:

1 1 3 1 2 1 5 1.0333 . . . 1,

and then use negative terms to make it sum to less than 1:

1 1 3 1 2 1 5 1 4 0.7833 . . . 1.

In doing so we obtain with the rearrangement

1

1

1

1 1 3 1 2

1

1 5 1 4

1

1 7 1 9 1 6

1

,

but does this rearrangement really sum to 1? Mightn’t we get stuck at some point and not
be able to continue the construction?

We certainly won’t get stuck under 1. No matter how many of the positive terms we
have used up to that point, the positive terms that we have remaining will sum to (they
are a tail of the divergent series 1 1 3 1 5 ). Similarly, we can’t get stuck over 1.
Therefore, we will be able to create partial sums which are alternatively greater than 1 and
less than 1, but will they converge to 1? This follows because the terms we are using are
getting smaller. If we add the term 1 93 to get a partial sum over 1, that means that our
previous partial sum was under 1, which means that the new partial sum is within 1 93 of
1. As we use up the larger terms of the series, we will have no choice but to get closer and
closer to 1. Therefore this construction (if we carried it out forever) would indeed yield a
sum of 1.

Now we know we can rearrange the alternating harmonic series to sum to 1, but what
was so special about 1? Absolutely nothing, in fact. If you replace the number 1 in the
previous argument with any other number S, everything works just fine. Now, what was
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so special about the alternating harmonic series? First, we needed that the positive terms
formed a divergent series and that the negative terms formed a divergent series (so that
our partial sums wouldn’t get stuck under or above 1). This fact is actually true for all
conditionally convergent series though (why?). Then we needed that the terms get in-
creasingly small, to prove that the limit of the partial sums was really 1. But if the terms
didn’t get close to 0, then the series would diverge by the Test for Divergence, so this is
true for all conditionally convergent series as well.

We have just sketched the proof of a famous theorem of Bernhard Riemann (1826–1866).

Reimann’s Rearrangement Theorem. If an is a conditionally
convergent series and S is any real number, then there is a rear-
rangment of sn which converges to S.

We conclude with a more formal proof.

Proof of Reimann’s Rearrangement Theorem We begin by dividing the terms of the sequence
an into two groups. Let bn denote the sequence which contains the positive terms of an and
cn denote the sequence which contains the negative terms of an .

Clearly an bn cn, so since an is not absolutely convergent, at least one of bn or
cn must diverge. But an is conditionally convergent, so if bn diverges (to ), cn must also

diverge (to ), and vice versa. Therefore both bn and cn diverge, to and , respectively.
Suppose that a target sum S is given. Choose N1 to be the minimal integer such that

b1 bN1
S

(note that if S is negative, then N1 will be 0). We can be certain that N1 exists because bn diverges
to . Note that, because b1 bN1 1 S, b1 bN1

is within bN1
of S. Next choose M1

minimal so that
b1 bN1

c1 cM1
S.

Again, M1 must exist because cn diverges to . Note that any partial sum of the form b1 bN1

c1 cn where n M1 must be within bN1
of S. Next choose N2 so that

b1 bN1
c1 cM1

bN1 1 bN2
S.

Next we choose M2 so that

b1 bN1
c1 cM1

bN1 1 bN2
cM1 1 cM2

S.

Continuing in this manner, define N3, M3, . . . . At each stage, our partial sums will be within bNi
or

cMi
of S for some i, and so since bn and cn (why?) we obtain a rearrangement that sums

to S, as desired.
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EXERCISES FOR SECTION 2.8

For Exercises 1–12, determine if the given series
converge absolutely, converge conditionally, or di-
verge. Note that these exercises may require the use
of all the tests we have learned thus far.

1.
n 1

cos n

n2

2.
n 1

1 n n

n 1

3.
n 1

2 n

2n 1 !

4.
n 1

1 n

n ln n

5.
n 2

1

n ln n 2

6.
n 1

1

n ln n ln ln n

7.
n 1

1 n

n 4

8.
n 1

1 n cos 1 n

9.
n 1

1 n 1 n

n2 1

10.
n 1

cosn4 sin n5

n2

11.
n 1

1 nn4

en

12.
n 1

1 n

ln ln ln ln ln n

Determine if the series in Exercises 13–16 converge
at x 1 and at x 5.

13.
n 1

x 2 n

3n

14.
n 1

x 2 n

3n n

15.
n 1

x 2 n

3nn2

16.
n 1

1 n x 2 n

3n n

Determine whether the series in Exercises 17–20
converge at x 2 and at x 4.

17.
n 0

n2

n9 5

x 1

3

n

18.
n 0

x 1 2 n3

3nn7 2n

19.
n 1

n2 1

2n 3n
x 1 n

20.
n 0

sin n

n3

x 1

3

n

Determine whether the series in Exercises 21–24
converge at x 0 and at x 4.

21.
n 1

x 2 n

2nn3 2

22.
n 1

1

n ln n

x 2

2

n

23.
n 0

2 x n

n2n 2n

24.
n 0

x 2 n sin n

2n

Exercises 25 and 26 prove the first part of the Abso-
lute Convergence Theorem: absolutely convergent
series converge.

25. Verify the inequality

0 an an 2 an

and use this to prove that if an is absolutely con-
vergent, then the series an an converges.

26. Use the conclusion of Exercise 25 and Exer-
cise 27 from Section 2.2 to prove that all absolutely
convergent series converge.
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ANSWERS TO SELECTED EXERCISES, SECTION 2.8
1. Absolutely convergent (use a comparison on the absolute values)

3. Absolutely convergent (use the Ratio Test on the absolute values)

5. Absolutely convergent (use the Integral Test)

7. Conditionally convergent (use the Alternating Series Test, and then use a comparison on the absolute
values)

9. Conditionally convergent (use the Alternating Series Test, and then use a comparison on the absolute
values)

11. Absolutely convergent (use the Ratio Test on the absolute values)

13. Diverges at both x 1 and x 5

15. Converges at x 1, diverges at x 5


