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2.6. THE RATIO TEST

We now know how to handle series which we can integrate (the Integral Test), and series
which are similar to geometric or p-series (the Comparison Test), but of course there are a
great many series for which these two tests are not ideally suited, for example, the series

n 1

4n

n!
.

Integrating the terms of this series would be difficult, especially since the first step would
be to find a continuous function which agrees with n! (this can be done, but the solution is
not easy). We could try a comparison, but again, the solution is not particular obvious (in-
deed, those readers who solved Exercise 37 of the last section should feel proud). Instead,
the simplest approach to such a series is the following test due to Jean le Rond d’Alembert
(1717–1783).

The Ratio Test. Suppose that an is a series with positive terms
and let L lim

n
an 1 an.

• If L 1 then an converges.

• If L 1 then an diverges.

• If L 1 or the limit does not exist then the Ratio Test is incon-
clusive.

You shold think of the Ratio Test as a generalization of the Geometric Series Test. For
example, if an arn is a geometric sequence then

lim
n

an 1

an
r,

and we know these series converge if and only if r 1. (Note that we will only consider
positive series here; we deal with mixed series in the next section.) In fact, the proof of the
Ratio Test is little more than an application on the Comparison Test.

Proof. If L 1 then the sequence an is increasing (for sufficiently large n), and therefore the
series diverges by the Test for Divergence.

Now suppose that L 1. Choose a number r sandwiched between L and 1: L r 1. Because
an 1 an L, there is some integer N such that

0 an 1 an r

for all n N . Set a aN . Then we have

aN 1 raN ar,
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and
aN 2 raN 1 ar2,

and in general, aN k ark. Therefore for sufficiently large n (namely, n N ), the terms of the

series an are bounded by the terms of a convergent geometric series (since 0 r 1), and so

an converges by the Comparison Test.

Since the Ratio Test involves a ratio, it is particularly effective when series contain
factorials, as our first example does.

Example 1. Does the series
n 1

4n

n!
converge or di-
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an

sn

verge?

Solution. First we compute L:

L lim
n

an 1

an
lim

n

4n 1

n 1 !

4n

n!

lim
n

4n 1

4n

n!

n 1 !
lim

n

4

n 1
0.

Since L 0, this series converges by the Ratio Test.

It is important to note that the Ratio Test is always inconclusive for series of the form
polynomial
polynomial . As an example, we consider the harmonic series and 1 n2.

Example 2. Show that the Ratio Test is inconclusive for 1 n and 1 n2.

Solution. For the harmonic series, we have

L lim
n

1

n 1
1

n

lim
n

n

n 1
.

In order to evaluate this limit, remember that we factor out the highest order term:

L lim
n

n

n

1

1 1
n

1,

so the test is inconclusive.
The series 1 n2 fails similarly:

L lim
n

1

n 1 2

1

n2

lim
n

n2

n 1 2
,
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and again we factor out the highest order term, leaving

L lim
n

n2

n2

1

1 1
n

2
1,

so neither series can be handled by the Ratio Test.

As Example 2 demonstrates, knowing that an 1 an 1 is not enough to conclude that
the sequence converges; we must know that the limit of this ratio is less than 1.

Example 3. Does the series
n 1

10n

n42n 1
converge or diverge?

Solution. The ratio between consecutive terms is

an 1

an

10n 1

n 1 42n 3

10n

n42n 1

10n

42 n 1

10

16

as n . Since this limit is less than 1, we can conclude that the series converges by the
Ratio Test.

The last example could also be handled by the Comparison Test, since

10n

n42n 1

10n

42n 1

1

4

10

16

n

,

so the series converges by comparison with a convergent geometric series. However, what
if we moved the n from the denominator to the numerator:

n 1

n10n

42n 1
?

Now the inequality in the comparison goes the wrong way, making the Comparison Test
much harder to use. On the other hand, the limit in the Ratio Test is unchanged (you
should check this for yourself). In general, it is usually a good idea to try the Ratio Test on
all series with exponentials (like 10n) or factorials.

Example 4. Does the series
n 1

2n !

2nn!
converge or diverge?

Solution. Here the ratio between consecutive terms is

an 1

an

2n 2 !

2n 1 n 1 !

2n !

2nn!

2n 2 2n 1

2 n 1
2n 1
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as n . Since this limit is greater than 1 (or any other number, for that matter), the series
diverges by the Ratio Test.

Our last example could be done using the Comparison Test (how?), but it is (probably)
easier to use the Ratio Test.

Example 5. Does the series
n 1

n2 2n 1

3n 2
converge

1

2

3

1 2 3 4 5 6 7 8 9 10

or diverge?

Solution. In this case the ratio between consecutive
terms is

an 1

an

n 1 2 2 n 1 1

3n 1 2

n2 2n 1

3n 2

n 1 2 2 n 1 1

n2 2n 1

3n 2

3n 1 2
,

so pulling out the highest order terms, we have

an 1

an

n2

n2

1 1
n

2
2 1

n
1
n2

1
n2

1 2 1
n

1
n2

3n

3n 1

1 2
3n

1 2
3n 1

1

3

as n . Because this limit is less than 1, the series converges by the Ratio Test.

EXERCISES FOR SECTION 2.6

Exercises 1–4 give various values of

L lim
n

an 1

an
.

In each case, state what you conclude from the Ratio
Test about the series an.

1. L 2

2. L 1

3. L 1 2

4. L

In Exercises 5–16, first compute

L lim
n

an 1

an
,

and then use the Ratio Test to determine if the given
series converge or diverge.

5.
n 1

2n 5

3n

6.
n 1

7n 2

2n6n

7.
n 1

n3n

n 2
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8.
n 1

n3n

n 4n

9.
n 1

1

n!

10.
n 1

2n n

n!

11.
n 1

n! 2

2n !

12.
n 1

2n !

n! 2

13.
n 1

n!

n!

14.
n 1

n!

99n n!

15.
n 1

nn

n!

16.
n 1

n!

nn

17. Find a sequence an of positive (in particular,
nonzero) numbers such that both an and 1 an

diverge.

18. Is there a sequence an satisfying the condi-
tions of the previous problem such that

lim
n

an 1

an

exists and is not equal to 1?

A stronger test than the Ratio Test, proved by Au-
gustin Louis Cauchy (1789–1857), is the following.

The Root Test. Suppose that an 0 for all n and let

L lim
n

n an. The series
n 1

an converges if L 1

and diverges if L 1. (If L 1 then the Root Test
is inconclusive.)

Our first task is to prove this result.

19. Copying the beginning of the proof of the Ra-
tio Test, give a proof of the Root Test.

Use the Root Test to determine if the series in Exer-
cises 20–26 converge or diverge.

20.
n 1

3n

5n

4n

21.
n 1

n2 1

2n2 n

n

22.
n 2

n

lnn n

23.
n 1

1
1

n

n

24.
n 1

1
1

n

n

25.
n 1

1
1

n

n2

26.
n 1

1
1

n

n2

Exercises 27 and 28 show that the Root Test is a
stronger test than the Ratio Test.

27. Show that the Root Test can handle any se-
ries that the Ratio Test can handle by proving that if
L lim

n
an 1 an exists then lim

n

n an L.

28. Show that there are series that the Root Test
can handle but that the Ratio Test cannot handle by
considering the series an where

an
n 2n if n is odd,
1 2n if n is even.

In some cases where the ratio and root tests are in-
conclusive, the following test due to Joseph Raabe
(1801–1859) can prove useful.

Raabe’s Test. Suppose that an is a positive series.
If there is some choice of p 1 such that

an 1

an
1

p

n
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for all large n, then
n 1

an converges.

Exercises 29–31 ask you to prove Raabe’s Test, while
Exercises 32 and 33 consider an application of the
test.

29. Show that if p 1 and 0 x 1 then

1 px 1 x p.

This is called Bernoulli’s inequality, after Johann
Bernoulli (1667–1748). Hint: Set f x px 1 x p.
Show that f 0 1 and f x 0 for 0 x 1.
Conclude from this that f x 1 for all 0 x 1.

30. Assuming that the hypotheses of Raabe’s Test
hold and using Exercise 29, show that

an 1

an
1

1

n

p
bn 1

bn

where bn 1 n 1 p.

31. Rewrite the inequality derived in Exercise 30
as

an 1

bn 1

bn 1

bn
,

use this to show that an Mbn for some positive
number M and all large n, and use this to prove
Raabe’s Test.

32. Show that the Ratio Test is inconclusive for the
series

n 1

1 3 5 2k 1

4 6 8 2k 2
.

33. Use Raabe’s Test to prove that the series in
Exercise 32 converges.
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ANSWERS TO SELECTED EXERCISES, SECTION 2.6
1. The series diverges

3. The series converges

5. L 2 3, so the series converges by the Ratio Test.

7. L 3, so the series diverges by the Ratio Test.

9.
an 1

an

1

n 1
0 as n , so the series converges by the Ratio Test.

11.
an 1

an

n 1 n 1

2n 2 2n 1

1

4
as n , so the series converges by the Ratio Test.

13.
an 1

an
n 1 as n , so the series diverges by the Ratio Test.

15. The ratio here is

an 1

an

n 1 n 1n!

nn n 1 !

n 1 n 1

n 1 nn

nn

n 1 n
1

1

n

n

.

Recall from Example 11 of Section 2.1 that the limit of this ratio is L e, so the series diverges by the
Ratio Test because e 1.


