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2.4. IMPROPER INTEGRALS AND THE INTEGRAL TEST

In this section we discuss a very simple, but powerful, idea: in order to prove that certain
series converge or diverge, we may compare them to integrals. There are a few important
caveats with this comparison, which we will make note of when we present the Integral
Test formally. To motivate this test, we return to the harmonic series 1 n. In Section 2.2,
we saw Nicolas Oresme’s classic proof that the harmonic series diverges. Here, we present
another proof, which will generalize to handle many more series.

To begin, let us represent the series 1 n as the total area contained in an infinite se-
quence of 1 1 n rectangles. Beginning with the first rectangle stretching from x 1 to
x 2 and placing the rectangles next to each other, we get the following.
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We now approximate the area under these rectangles. In this case, we only have to
observe that the function 1 x lies below the tops of these rectangles for x 1, as shown
below.
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Therefore, there is more area under the rectangles than under the function 1 x. As we
know that area under a curve is given by an integral, to find the area under 1 x for x 1,
we need to evaluate

1

1

x
dx.

This type of an integral may be unfamiliar because it involves infinity, and for this
reason, integrals of this type are called improper integrals . Since we can’t simply take the
anti-derivative of 1 x and plug in , we do the next best thing. We define the improper
integral as a limit:

1

1

x
dx lim

b

b

1

1

x
dx.

These are not the only type of improper integrals. Others involve integrating near a vertical asymptote of
a function. See Exercises 36–43 for more examples of improper integrals.
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Using this definition, we have another argument for why 1 n diverges:
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.

In general, if we have a function f x defined from x a to x , we define

a

f x dx lim
b

b

a

f x dx,

and we say that this improper integral converges if the limit converges, and that it diverges
if the limit diverges. The reader should note the similarity between this definition and the
definition we made for the convergence of a series.

Comparing series to integrals can also be used to show that they converge, as we illus-
trate in the next example.

Example 1. Show that 1 n2 converges by comparing it to an integral.

Solution. We do roughly the same thing as we did with the harmonic series, but here,
since we are to show that the series converges, we want the area in our rectangles to be
less than the area under the curve. For this reason, we begin by placing 1 1 n2 rectangles
starting at x 0:
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Now we have exactly what we want, because the area under these rectangles is strictly
less than the area under 1 x2 for x 0:
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This suggests that we should integrate 1 x2 from x 0 to x to get an upper bound
on 1 n2. However, since 1 x2 has a vertical asymptote at x 0, such an integral would be
doubly improper and actually diverges, as shown by Exercises 37 and 38, so can’t be used
to bound 1 n2 from above. To get around this problem, we can simply pull off the first
term of the series, and compare the rest to the integral of 1 x2 from x 1 to x :
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It is tempting to conclude right now that 1 n2 converges, because we know that it is
at most 2, but this would be reckless. Remember in Example 6 of Section 2.2 we presented
a series — the series 1 n 1 — which has bounded partial sums but does not converge.

However, in this case, 1 n2 is positive for all n, so the partial sums sn of 1 n2 are
monotonically increasing. By the above argument, these partial sums are bounded: sn lies
between 0 and 2 for all n, and therefore we know by the Monotone Convergence Theorem
that the sequence sn converges to a limit, and thus 1 n2 converges.

While we have shown that 1 n2 converges, we have not computed its value. For
series that aren’t geometric, such questions are generally extremely difficult, and 1 n2 is
no exception. Finding 1 n2 became known as the Basel problem after it was posed by
Pietro Mengoli (1626–1686) in 1644. In 1735, at the age of twenty-eight, Leohnard Euler
showed that

n 1

1

n2

π2

6
,

one of the first major results in what would be a marvelous career. We discuss his first
proof (which has been incredibly influential despite the fact that it contains a flaw) in Exer-
cises 54–58 of Section 3.3. Euler began his exploration of the Basel problem by computing
the sum to 17 decimal places (which in itself was quite a feat, accomplished by viewing
the series as an integral), a bit like we did in Section 2.2 to guess the sum of the alternating
harmonic series. Amazingly, without any aid like the Inverse Symbolic Calculator, Euler rec-
ognized that this approximation looked like π2

6! This gave Euler a significant advantage
in finding the solution, since he knew what the answer should be.
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Euler went on to find formulas for 1 np for all even integers p. But what about the
odd integers? For a very long time, mathematicians could not even prove that 1 n3 was
irrational, let alone express it in terms of well-known constants. In 1978, Roger Apéry
(1916–1994) announced that he had a proof of this result. However, Apéry was not well-
known and there were significant doubts that his proof could be correct. Apéry fed this
suspicion by giving a strange talk announcing his proof, one of the key ingredients of
which was the equation

n 1

1

n3

5

2
n 1

1 n 1 n! 2

n3 2n !
.

When asked how he derived this equation, Apéry is alleged to have replied “they grow
in my garden.” Nevertheless, he completed his proof, stunning the mathematical estab-
lishment. The analogous question about the irrationality of 1 np for odd integers p 5

remains unsolved.
It is now time to generalize our two examples and make a test out of them. First we

must decide what was special about 1 n and 1 n2 that allowed us to make the com-
parisons we made. In the case of 1 n, we needed that the function 1 x lies below the
rectangles we formed. This relies on the fact that 1 x is decreasing. Similarly, in the case
of 1 n2 we needed that the function 1 x2 lies above the rectangles we formed. Because
these rectangles were slid over by one unit, this too relies on the fact that 1 x2 is decreasing.
We also used, in the 1 n2 case, the fact that 1 x2 is positive. Finally, we need to be able to
evaluate the integrals. We could add this as a hypothesis, but in the interest of simplicity,
we simply require that our functions be continuous, which guarantees that they can be
integrated. Under these conditions, we have the following test.

The Integral Test. Suppose that f is a positive, decreasing, and

continuous function, and that an f n . Then
n 1

an converges

if and only if the improper integral
1

f x dx converges.

Proof. As in our two examples, we can sandwich the partial sums sn between two improper
integrals:

n

1

f x dx sn a1

n 1

1

f x dx.

Now since we are proving an “if and only if” statement, we have two things to prove. First, suppose
that

1

f x dx
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converges. Then, by using the upper-bound, we have

n 1

an lim
n

sn lim
n

a1

n 1

1

f x dx .

Because an f n is positive, we know that the partial sums sn are monotonically increasing, so
since the above inequality shows that the sequence sn is bounded, the Monotone Convergence
Theorem implies that sn has a limit. This proves that an converges if the improper integral

1

f x dx converges.

Now suppose that

1

f x dx

diverges. Using the lower-bound, we have

n 1

an lim
n

sn lim
n

n

1

f x dx .

Therefore, the sequence sn of partial sums diverges to , so the series an diverges.

The Integral Test is a very powerful tool, but it has a serious drawback: we must be
able to evaluate the improper integrals it requires. For example, how could we use the
Integral Test to determine whether 4n n! converges? Nevertheless, there are numerous
examples of series to which it applies.

Example 2. Does the series
n 1

1

n2 1
converge or diverge?

Solution. We first evaluate the improper integral in the Integral Test:

1

dx

x2 1
lim
b

b

1

dx

x2 1
lim
b

arctan b arctan 1.

To evaluate this limit, it may be helpful to recall the plot of arctan:
π 2

π 2

Therefore, we have
lim
b

arctan b arctan 1 π 2 π 4,

so the series 1 n2 1 converges by the Integral Test.
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We began the section by considering 1 n and 1 n2. What about 1 np for other val-
ues of p? We can evaluate the integral of 1 xp, so the Integral Test can be used to determine
which of these series converge. Because series of this form occur so often, we record this
fact as its own test.

The p-Series Test. The series 1 np converges if and only if p 1.

Proof. When p 1, we already know that the series diverges ( 1 n is the example we began the
section with). For other values of p, we simply integrate the improper integral from the Integral
Test:

1

1
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b

b

1

x p dx
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b

1

p 1
x p 1

b

1
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1

p 1
b p 1

1
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If p 1 then the function x p 1 decreases to 0 (the exponent is negative), so in this case the limit

above converges to 1 p 1 1 1 p. Therefore, by the Integral Test, 1 np converges if p 1. On

the other hand, if p 1 then the function x p 1 increases without bound, so in this case the limit

above diverges to , and so 1 np diverges if p 1.

We conclude this section with error estimates. Since improper integrals can be used to
bound series, they can also be used to bound the tails of series, i.e., the error in a partial
sum:

The Integral Test Remainder Estimates. Suppose that f is a posi-
tive, decreasing, and continuous function, and that an f n . Then
the error in the nth partial sum of an is bounded by an improper
integral:

sn

n 1

an
n

f x dx.

The proof of the Integral Test Remainder Estimate is almost identical to the proof of the
Integral Test itself, so we content ourselves with an example.

Example 3. Bound the error in using the fourth partial sum s4 to approximate
n 1

1 n2.
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Solution. The error in this case is the difference between sn and the true value of the
series:

Error sn

n 1

1

n2

By the remainder estimates, we have:

Error
4

1

x2
dx

lim
b

b

4

1

x2
dx

lim
b

1

x

b

4

1

4
.

This is not a very good bound. As we mentioned earlier, Euler approximated the value of
this series to within 17 decimal places. How many terms would we need to take to get the
upper bound on the error from the Integral Test Remainder Estimates under 10 17?

EXERCISES FOR SECTION 2.4

Arrange the quantities in Exercises 1–4 in order
from least to greatest.

1.
n 1

1

n2
1

1

dx

x2
2

dx

x2

2.
n 9

1

n2 1 10

dx

x2 1 9

dx

x2 1

3.
10

n 1

1

n7 2

11

1

dx

x7 2

10

0

dx

x7 2

4.
10

n 1

n
10

0

x dx
11

1

x dx

For Exercises 5–20, use the Integral Test to deter-
mine if the series converge or diverge, or indicate
why the Integral Test cannot be used.

5.
n 1

1

n3

6.
n 1

1
3 n 3

7.
n 1

cos n

n2

8.
n 1

1 n 1

n

9.
n 1

4n

2n2 3 2

10.
n 1

3

2 5n

11.
n 1

n n

n

12.
n 1

1

n2 sin n

13.
n 0

n

n2 1
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14.
n 2

ln n

n

15.
n 1

2n 3

n

16.
n 1

5

n n

17.
n 2

1

n lnn

18.
n 2

1

n ln n 2

19.
n 2

1

n lnn ln ln n

20.
n 2

1

n ln n ln lnn 2

By the Integral Test Remainder Estimates, how
many terms would you need to use to approximate
the sums in Exercises 21–24 to within 1 100?

21.
n 1

1

n4

22.
n 1

1

n5

23.
n 1

1

n ln n 2

24.
n 1

5

n n

Exercises 25 and 26 concern an infinite sequence of
circles which do not overlap and have radii 1, 1 2,
1 3, . . . , as shown below.

. . .

25. Is the total area inside all of the circles finite?
(Note that you are not asked to find this total.)

26. Is the total circumference inside all of the cir-
cles finite? (Note that you are not asked to find this
total.)

Exercises 27–32 require integration by parts. Use
the Integral Test to determine if the series converge
or diverge.

27.
n 1

ln n

n2

28.
n 1

lnn

n7 6

29.
n 1

n2

en

30.
n 1

e1 n

n2

31.
n 1

1

ne1 n

32.
n 1

n

2n

33. Use the Integral Test to verify that the geomet-

ric series
n 1

arn converges for 0 r 1.

34. In the Integral Test, we began both the se-
ries and the integral at 1 (technically, n 1 and
x 1, respectively). Show that this is not necessary
by proving the following. Suppose that f is a posi-
tive, decreasing, and continuous function, and that
an f n . Then

n 1

an

converges if and only if there is some N so that the
improper integral

N

f x dx

converges.

35. Use the fact that

n 1

1 n 1

n
1

1

2

1

3

1

4

n 1

1

2n 1

1

2n

to prove that the alternating harmonic series con-
verges using the Integral Test.
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We have focused on only one type of improper in-
tegrals, which are called improper because their do-
mains are infinite. However, there is another type,
which are called improper because their integrands
have vertical asymptotes. To begin with, suppose
that f x is continuous on the interval a, b but dis-
continuous at x a. Then we define the integral of
f x from a to b as a limit:

b

a

f x dx lim
c a

b

c

f x dx.

Use this definition to evaluate the integrals in Exer-
cises 36–39.

36.
1

0

x dx

37.
1

0

x2 dx

38.
0

x2 dx

39.
1

0

x1.001 dx

If instead f x is continuous on the interval a, b

but discontinuous at x b, then we consider the
limit as the upper-bound of the integral approaches
b from below:

b

a

f x dx lim
c b

c

a

f x dx.

Use this definition to evaluate the integrals in Exer-
cises 40–41.

40.
1

0

1

1 x
dx

41.
1

0

1

1 x2
dx

Finally, it could be the case that f x has a verti-
cal asymptote between the bounds a and b, say at
x c for a c b. In this case, assuming that f x
is continuous on both a, c and c, b , we break the
integral in two:

b

a

f x dx
c

a

f x dx
b

c

f x dx.

We then evaluate each of these improper integrals
using the rules above. Using this definition, evalu-
ate the integrals in Exercises 42–43.

42.
2

0

1

1 x 2
dx

43.
1

1

x 3 dx

Euler’s constant γ is defined as

γ lim
n

1
1

2

1

3

1

n
ln n.

It is not clear a priori that this limit exists, and so Ex-
ercises 44 and 45 show how to prove that it does ex-
ist. Its value is approximately 0.577215, and a very
readable account of research related to γ is given by
Julian Havil in his book Gamma.

44. Show that

ln n 1 1
1

2

1

3

1

n
ln n,

and conclude from this that the sequence bn

1 1 2 1 3 1 n ln n is bounded both above
and below.

45. Show that

ln n 1 ln n
1

n 1
,

and use this to conclude that the sequence bn from
Exercise 44 is decreasing. This will imply that bn

is a decreasing bounded sequence, so its limit, γ, ex-
ists by the Monotone Sequence Theorem.

Exercises 46 and 47 show one way to sum the al-
ternating harmonic series, using Euler’s constant γ
discussed in Exercises 44 and 45.

46. Let sn denote the nth partial sum of the alter-

nating harmonic series
n 1

1 n 1

n
. Verify that

s2n 1
1

2

1

3

1

2n

1
1

2

1

3

1

n
.

47. Use Exercise 46 to show that

s2n ln 2 s2n ln 2n γ ln n γ 0,
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proving that
n 1

1 n 1

n
ln 2.

Exercises 48–50 ask you to develop estimates for n!.
A more precise estimate is named for James Stirling
(1692–1770).

Stirling’s Formula. lim
n

n!

2πn n e
n 1.

48. Using the fact that ln n! ln 2 ln 3 ln n,
prove that

ln n 1 !
n

1

lnx dx ln n!

Note that ln x dx x ln x x C.

49. Prove that n! e n e
n.

50. Prove that n! en n e
n.

Exercises 51–55 consider a back-of-the-envelope cal-
culation of the escape velocity from Earth using im-
proper integration. These exercises are due to Pro-
fessor Stephen Greenfield.

51. The continental US is about 3400 miles wide (at
its widest point) and contains 4 time zones. Since

there are 24 time zones in the world, show that the
radius of the Earth is about 4000 miles.

52. Two masses attract each other with a force
whose magnitude is proportional to the product of
the masses divided by the square of the distance be-
tween them. So for a mass m, the magnitude of the
force of gravity is GmM r2, where G is a constant,
M is the mass of the Earth, and r is the distance
to the center of the Earth. Since work is equal to
force times distance, show that the amount of work
needed to lift a mass m from the surface of the Earth
to altitude R is

R

4000

GmM

r2
dr,

and calculate this integral. Then let R to show
that GmM 4000 is the most work you can do to lift
the mass m to anywhere in the universe (disregard-
ing all objects besides Earth, of course).

53. Using the fact that kinetic energy is mv2 2, com-
pute how much kinetic energy we would need to
supply to lift the mass m to anywhere in the uni-
verse.

54. Use the fact that acceleration due to gravity on
the surface of the Earth is about 32 ft/sec2, which is
equal to GmM 40002 to solve for GM .

55. Use the answers to Exercises 53 and 54 to show
that the escape velocity from the Earth is about 7
miles per second.
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ANSWERS TO SELECTED EXERCISES, SECTION 2.4

1.
2

dx

x2

n 1

1

n2
1

1

dx

x2

3.
11

1

dx

x7 2

10

n 1

1

n7 2

10

0

dx

x7 2

5. Converges by the Integral Test.

7. The Integral Test does not apply (some terms are negative).

9. Converges by the Integral Test (make a u-substitution).

11. The Integral Test does not apply (the series is not decreasing). However, this series diverges by the Test
for Divergence.

13. Diverges by the Integral Test (make a u-substitution).

15. The Integral Test does not apply (the series is not decreasing). However, this series diverges by the Test
for Divergence.

17. Diverges by the Integral Test (set u ln x to evaluate the integral).

19. Diverges by the Integral Test (set u ln lnx to evaluate the integral).

21. 4 terms suffice.

23. e100 terms are enough (note that this is 2.688 1043)

25. The total area inside the circles is finite.


