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2.3. GEOMETRIC SERIES

One of the most important types of infinite series are geometric series. A geometric series is
simply the sum of a geometric sequence,

n 0

arn.

Fortunately, geometric series are also the easiest type of series to analyze. We dealt a little
bit with geometric series in the last section; Example 1 showed that

n 1

1

2n
1,

while Exercise 26 presented Archimedes’ computation that

n 1

1

4n

1

3
.

(Note that in this section we will sometimes begin our series at n 0 and sometimes begin
them at n 1.)

Geometric series are some of the only series for which we can not only determine con-
vergence and divergence easily, but also find their sums, if they converge:

Geometric Series. The geometric series

a ar ar2

n 0

arn

converges to
a

1 r

if r 1, and diverges otherwise.

Proof. If r 1, then the geometric series diverges by the Test for Divergence, so let us suppose
that r 1. Let sn denote the sum of the first n terms,

sn a ar ar2 arn 1,

so
rsn ar ar2 arn 1 arn.
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Subtracting these two, we find that

sn a ar ar2 arn 1

rsn ar ar2 arn 1 arn

1 r sn a arn.

This allows us to solve for the partial sums sn,

sn
a arn

1 r

a

1 r

arn

1 r
.

Now we know (see Example 5 of Section 2.1) that for r 1, rn 0 as n , so

arn

1 r
0

as n as well, and thus

lim
n

sn lim
n

a

1 r

arn

1 r

a

1 r
,

proving the result.

An easy way to remember this theorem is

geometric series
first term

1 ratio between terms
.

We begin with two basic examples.

Example 1. Compute 12 4 4
3

4
9

4
27

.

Solution. The first term is 12 and the ratio between terms is 1 3, so

12 4
4

3

4

9

4

27

first term

1 ratio between terms

12

1 1
3

18,

solving the problem.

Example 2. Compute
n 6

1 n 2n 3

3n
.

Solution. This series is geometric with common ratio

r
an 1

an

1 n 1 2n 4

3n 1

1 n
2n 3

3n

2

3
,
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and so it converges because 2 3 1. Its sum is

n 6

1 n 2n 3

3n

first term

1 ratio between terms

29
36

1 2 3
,

which simplifies to 512 1215.

The use of the geometric series formula is of course not limited to single geometric
series, as our next example demonstrates.

Example 3. Compute
n 1

2n 1 9n 2

5n
.

Solution. We break this series into two:

n 1

2n 1 9n 2

5n
n 1

2n 1

5n
n 1

9n 2

5n

(if both series converge). The first of these series has common ratio 2 5, so it converges. To
analyze the second series, note that 9n 2 91 2 n

9
n

3n, so this series has common
ratio 3 5. Since both series converge, we may proceed with the addition:

n 1

2n 1 9n 2

5n
n 1

2n 1

5n
n 1

3n

5n

22
5

1 2 5

3 5

1 3 5

4

3

3

2
.

This answer simplifies to 17 6.

If a geometric series involves a variable x, then it may only converge for certain values
of x. Where the series does converge, it defines a function of x, which we can compute
from the summation formula. Our next example illustrates these points.

Example 4. For which values of x does the series
n 0

1 nx2n converge? For those values

of x, which function does this series define?

Solution. The common ratio of this series is

r
an 1

an

1 n 1x2n 2

1 nx2n
x2.

Since geometric series converge if and only if r 1, we need x2 1 for this series to
converge. This expression simplifies to x 1.
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Where this series does converge (i.e., for 1 x 1), its sum can be found by the
geometric series formula:

n 0

1 nx2n first term

1 ratio between terms

1

1 x2

1

1 x2
.

Although note that this only holds for x 1.

The geometric series formula may also be used to convert repeating decimals into frac-
tions, as we show next.

Example 5. Express the number 4.342342342 . . . as a fraction in the form p q where p and q

have no common factors.

Solution. Our first step is to express this number as the sum of a geometric series. Since
the decimal seems to repeat every 3 digits, we can write this as

4.342342342 4
342

1000

342

10002
4

n 1

342

1000n
.

This series is geometric, so we can use the formula to evaluate it:

n 1

342

1000n

first term

1 ratio between terms

342 1000

1 1 1000

342

1000

1000

999

342

999
.

Our initial answer is therefore

4
342

999

3996 342

999

4338

999
.

Since we were asked for a fraction with no common factors between the numerator and
denominator, we now have to factor out the 9 which divides both 4338 and 999, leaving

4.342342342
482

111
.

To be sure that 482 and 111 have no common factors, we need to verify that 111 3 37,
and the prime 37 does not divide 482.

Our next example in some sense goes in the other direction. Here we are given a frac-
tion and asked to use geometric series to approximate its decimal expansion.

Example 6. Use geometric series to approximate the decimal expansion of 1 48.

Solution. First we find a number near 1 48 with a simple decimal expansion; 1 50 will work
nicely. Now we express 1 48 as 1 50 times a fraction of the form 1 1 r :

1

48

1

50 2

1

50

1

1 2
50

.
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Now we can expand the fraction on the righthand side as a geometric series,

1

48

1

50
1

2

50

2

50

2
2

50

3

.

Using the first two terms of this series, we obtain the approximation 1 48 0.02 1 0.02

0.0204.

Example 7. Suppose that you draw a 2” by 2” square, then you join the midpoints of its
sides to draw another square, then you join the midpoints of that square’s sides to draw
another square, and so on, as shown below.

Would you need infinitely many pencils to continue this process forever?

Solution. If we look just at the upper left-hand corner of this figure, we see a triangle with
two sides of length 1” and a hypotenuse of length 2”:

1”

1”
2”

So the sequence of side lengths of these rectangles is geometric with ratio 2 2: 2”, 2”,
1 2”, . . . . Since 2 2 1, the sum of the side lengths of all these (infinitely many) squares
therefore converges to

2

1
2

2

2

2 2

2

2 2 2 .
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As the perimeter of a square is four times its side length, the total perimeter of this infinite
construction is 8 2 2 ”, so we would only need finitely many pencils to draw the figure
forever.

Our last two examples are significantly more advanced that the previous examples. On
the other hand, they are also more interesting.

Example 8 (A Game of Chance). A gambler offers you a proposition. He carries a fair
coin, with two different sides, heads and tails (“fair” here means that it is equally likely to
land heads or tails), which he will toss. If it comes up heads, he will pay you $1. If it comes
up tails, he will toss the coin again. If, on the second toss, it comes up heads, he will pay
you $2, and if it comes up tails again he will toss it again. On the third toss, if it comes up
heads, he will pay you $3, and if it comes up tails again, he will toss it again... How much
should you be willing to pay to play this game?

Solution. Would you pay the gambler $1 to play this game? Of course. You’ve got to win
at least a dollar. Would you pay the gamble $2 to play this game? Here things get more
complicated, since you have a 50% chance of losing money if you pay $2 to play, but you
also have a 25% chance to get your $2 back, and a 25% chance to win money. Would you
pay the gambler one million dollars to play the game? The gambler asserts that there are
infinitely many positive integers greater than one million. Thus (according to the gambler,
at least) you have infinitely many chances of winning more than one million dollars!

To figure out how much you should pay to play this game, we compute its average
payoff (its expectation). In the chart below, we write H for heads and T for tails.

Outcome Probability Payoff Expected Winnings
H 1 2 $1 1 2 $1 $0.50

TH 1 4 $2 1 4 $2 $0.50

TTH 1 8 $3 1 8 $3 $0.375

TTTH 1 16 $4 1 16 $4 $0.25
...

...
...

...

TT T

n 1

H 1 2n $n 1 2n $n $n 2n

...
...

...
...

There are several observations we can make about this table of payoffs. First, the sum of
the probabilities of the various outcomes is

n 1

1

2n
1,

which indicates that we have indeed listed all the (non-negligible) outcomes. But what if
the coin never lands heads? The probability of this happening is lim

n
1 2

n
0, and so it is

safely ignored. Therefore, we ignore this possibility.
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To figure out how much you should pay to play this game, it seems reasonable to
compute the sum of the expected winnings, over all possible outcomes. This sum is

1

2

2

22

3

23

4

24
n 1

n

2n
.

We demonstrate two methods to compute this sum. The first is elementary but uses a
clever trick, while the second uses calculus.

Applying the geometric series formula, we can write:

1

2

1 2 3 4 5 6 7 8 9 10

an

sn

1 1 2 1 22 1 23 1 24

1 2 1 22 1 23 1 24

1 22 1 23 1 24

1 23 1 24

...
...

If we now add this array vertically, we obtain an equa-
tion whose left-hand side is 2 (it is the sum of a geo-
metric series itself), and whose right-hand side, 1 2

2 22 3 23 , is the sum of the expected winnings, so

n 1

n

2n
2.

Because the expected winnings are $2, you should be willing to pay anything less than
$2 to play the game, because in the long-run, you will make money.

Now we present a method using calculus. Since we know that

1

1 x
1 x x2 x3 x4

we can differentiate this formula to get

1

1 x 2
0 1 2x 3x2 4x3 .

Now multiply both sides by x:

x

1 x 2
x 2x2 3x3 4x4 .

Finally, if we set x 1 2 we obtain the sum we are looking for:

2
1

2
2

1

2

2

3
1

2

3

4
1

2

4

n 1

n

2n
.
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One might (quite rightly) complain that we don’t know that we can take the derivative of
an infinite series in this way. We consider these issues in Section 3.2.

Example 9 (The St. Petersburg Paradox ). Impressed with the calculation of the expected
winnings, suppose that the gambler offers you a different wager. This time, he will pay $1

for the outcome H , $2 for the outcome TH , $4 for the outcome TTH , $8 for the outcome
TTTH , and in general, $2n if the coin lands tails n times before landing heads. Computing
the expected winnings as before, we obtain the following chart.

Outcome Probability Payoff Expected Winnings
H 1 2 $1 $0.50

TH 1 4 $2 $0.50
TTH 1 8 $4 $0.50

TTTH 1 16 $8 $0.50
...

...
...

...

TT T

n

H 1 2n $2n $0.50

...
...

...
...

The gambler now suggests that you should be willing to pay any amount of money to play
this game since the expected winnings, $0.50 $0.50 $0.50 , are infinite!

Solution. That is why this game is referred to as a paradox. Seemingly, there is no “fair”
price to pay to play this game. Bernoulli, who introduced this paradox, attempted to
resolve it by asserting that money has “declining marginal utility.” This is not in dispute;
imagine what your life would be like with $1 billion, and then imagine what it would be
like with $2 billion. Clearly the first $1 billion makes a much bigger difference than the
second $1 billion, so it has higher “utility.” However, the gambler can simply adjust his
payoffs, for example, he could offer you $22n 1

if the coin lands tails n 1 times before
landing heads, so even taking into account the declining marginal utility of money, there
is always some payoff function which results in a paradox.

A practical way out of this paradox is to note that the gambler can’t keep his promises.
If we assume generously that the gambler has $1 billion, then the gambler cannot pay you
the full amount if the coin lands tails 30 times before landing heads (229 536, 870, 912,
but 230 1, 073, 741, 824). The payouts in this case will be as above up to n 29, but then
beginning at n 30, all you can win is $1 billion. This gives an expected winnings of

n 29

n 1

$0.50
n 30

$1,000,000,000

2n 1
$14.50

$1,000,000,000
230

1 1
2

$16.36.

This problem is known as the St. Petersburg Paradox because it was introduced in a 1738 paper of Daniel
Bernoulli (1700–1782) published in the St. Petersburg Academy Proceedings.
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So by making this rather innocuous assumption, the game goes from being “priceless” to
being worth the same as a new T-shirt.

Another valid point is that you don’t have unlimited money, so there is a high proba-
bility that by repeatedly playing this game, you will go broke before you hit the rare but
gigantic jackpot which makes you rich.

One amusing but nevertheless accurate way to summarize the St. Petersburg Paradox
is therefore: If both you and the gambler had an infinite amount of time and money, you
could earn another infinite amount of money playing this game forever. But wouldn’t you
have better things to do with an infinite supply of time and money?

EXERCISES FOR SECTION 2.3

Determine which of the series in Exercises 1–8 are
geometric series. Find the sums of the geometric se-
ries.

1.
n 1

2n

3n

2.
n 1

1

n2

3.
n 1

1

n22n

4.
n 1

3n

42n 1

5.
n 0

1 n

2n

6.
n 0

5n

5n 4

7.
n 1

5n

25n 4

8.
n 0

3n

n!

Determine which of the geometric series (or sums of
geometric series) in Exercises 9–12 converge. Find
the sums of the convergent series.

9.
n 0

32n

2n

10.
n 1

4n 2 1

3n

11.
n 1

2n 5n

4n 9

12.
n 0

1 n 3n 2

5n 1

Find the sums of the series in Exercises 13–16.

13.
n 1

3n 5n

7n

14.
n 1

enπ n

15.
n 1

9 2 n 2

32n

16.
n 1

3n 2 4n 2

6n

Determine which values of x the series in Exer-
cises 17–20 converge for. When these series con-
verge, they define functions of x. What are these
functions?

17.
n 1

xn

3n

18.
n 1

2x 1 n

3n
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19.
n 1

5n 2xn

20.
n 1

x 3 n

2n 1

For Exercises 21–24, use geometric series to approx-
imate these reciprocals, as in Example 6.

21. 1 99

22. 1 102

23. 2 99

24. 1 24

For Exercises 25 and 26, suppose that
n 1

an is a ge-

ometric series such that the sum of the first 3 terms
is 3875 and the sum of the first 6 terms is 3906.

25. What is a6?

26. What is
n 1

an?

Exercises 27 and 28 consider the Koch snowflake. In-
troduced in 1904 by the Swedish mathematician
Helge von Koch (1870–1924), the Koch snowflake
is one of the earliest fractals to have been described.
We start with an equilateral triangle. Then we di-
vide each of the three sides into three equal line
segments, and replace the middle portion with a
smaller equilateral triangle. We then iterate this
construction, dividing each of the line segments of
the new figure into thirds and replacing the mid-
dle with an equilateral triangle, and then iterate this
again and again, forever. The first four iterations are

shown below.

27. Write a series representing the area of the Koch
snowflake, and find its value.

28. Write a series representing the perimeter of the
Koch snowflake. Does this series converge?

29. Two 50% marksmen decide to fight in a duel
in which they exchange shots until one is hit. What
are the odds in favor of the man who shoots first?

30. In the decimal system, some numbers have
more than one expansion. Verify this by showing
that 2.35999 . . . 2.36.

31. The negadecimal number system is like the
decimal system except that the base is 10. So,
for example, 12.43 10 1 10 2 2 10
4 10 1 3 10 2 97.63 in base 10. Prove
that (like the decimal system) there are non-unique
expansions in the negadecimal system by showing
that 1.909090 . . . 10 0.090909 . . . 10.

Exercises 32 and 33 ask you to prove that there are
infinitely many primes, following a proof of Euler.
Exercise 34 provides the classic proof, due to Euclid.

32. Prove, using the fact that every positive inte-
ger n has a unique prime factorization , that

1

n

1

2n

1

3n

1

5n

where the right-hand side is the product of all series
of the form 1

pn for primes p.

This refers to the fact that every positive integer n can be written as a product n pa1

1 pa2

2 p
ak
k for

primes p1, p2, . . . , pk and nonnegative integers a1, a2, . . . , ak.
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33. Use Exercise 32 to prove that there are in-
finitely many primes. Hint: the left hand-side di-
verges to , while every sum on the right hand-side
converges.

34. (Euclid’s proof) Suppose to the contrary
that there are only finitely many prime numbers,
p1, p2, . . . , pm . Draw a contradiction by consid-

ering the number n p1p2 pm 1.

35. Compute
n 1

n2

2n
.

Hint: consider the derivative of x 1 x 2. For now,
assume that you can differentiate this series as done
in Example 8.

36. Suppose the gambler from Example 8 alters
his game as follows. If the coin lands tails an even
number of times before landing heads, you must
pay him $1. However, if the coin lands tails an odd
number of times before landing heads, he pays you
$1. The gambler argues that there are just as many
even numbers as odd numbers, so the game is fair.
Would you be willing to play this game? Why or
why not? (Note that 0 is an even number.)

37. Suppose the gambler alters his game once
more. If the coin lands tails an even number of times
before landing heads, you must pay him $1. How-
ever, if the coin lands tails an odd number of times
before landing heads, he pays you $2. Would you
be willing to play this game? Why or why not?

38. Suppose that after a few flips, you grow
suspicious of the gambler’s coin because it seems
to land heads more than 50% of the time (but less
than 100% of the time). Design a procedure which
will nevertheless produce 50-50 odds using his un-
fair coin. (The simplest solution to the problem is
attributed to John von Neumann (1903–1957).)

39. Consider the series 1 n where the sum
is taken over all positive integers n which do not
contain a 9 in their decimal expansion. Due to
A.J. Kempner in 1914, series like this are referred
to as depleted harmonic series. Show that this series
converges. Hint: how many terms have denomina-
tors between 1 and 9? Between 10 and 99? More
generally, between 10n 1 and 10n 1?
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ANSWERS TO SELECTED EXERCISES, SECTION 2.3

1. Geometric series, converges to
2 3

1 2 3

2.

3. Not a geometric series.

5. Geometric series, converges to
1

1 1 2

2 3.

7. Geometric series, converges to
5 25

5

1 5 25

4 9765625.

9. Diverges; the ratio is 9 2 1.

11. Diverges.

13. The sum is
3 7

1 3 7

5 7

1 5 7

13 4.

15. The sum is
9
2

2
3

1 1 2

9
2

2
2.

17. Converges for 3 x 3, to the function
x 3

1 x 3

.

19. Converges for 1 5 x 1 5, to the function
53x

1 5x
.


