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2.2. AN INTRODUCTION TO SERIES

In everyday language, the words series and sequence mean the same thing. However,
in mathematics, it is vital to recognize the difference. A series is the result of adding a
sequence of numbers together. While you may never have thought of it this way, we deal
with series all the time when we write expressions like

1

3
0.333 . . . ,

since this means that
1

3

3

10

3

100

3

1000

In general we are concerned with infinite series such as

n 1

an a1 a2 a3

for various sequences an . First though, we need to decide what it means to add an
infinite sequence of numbers together. Clearly we can’t just add the numbers together
until we reach the end (like we do with finite sums), because we won’t ever get to the end.
Instead, we adopt the following limit-based definition.

Convergence and Divergence of Series. If the sequence sn of
partial sums defined by

sn a1 a2 an

has a limit as n then we say that

n 1

an lim
n

sn,

and in this case we say that
n 1

an converges. Otherwise,
n 1

an di-

verges.

We begin with a particularly simple example.

Example 1 (Powers of 2). The series
n 1

1

2n
converges to 1.
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Solution. We begin by computing a few partial sums:

s1
1 2 1 2 1 1 2

s2
1 2 1 4 3 4 1 1 4

s3
1 2 1 4 1 8 7 8 1 1 8

s4
1 2 1 4 1 8 1 16 15 16 1 1 16

These partial sums suggest that sn 1 1 2n. Once we have guessed this pattern, it is easy
to prove. If sn 1 1 2n, then sn 1 1 1 2n 1 2n 1 1 1 2n 1, so the formula is correct
for all values of n (this technique of proof is known as mathematical induction). With this

formula, we see that lim
n

sn 1, so
n 1

1 2n 1.

There is an alternative, more geometrical, way to

1 2

1 4

1 8

1 16

. .
.

see that this series converges to 1. Divide the unit
square in half, giving two squares of area 1 2. Now di-
vide one of these squares in half, giving two squares
of area 1 4. Now divide one of these in half, giving
two squares of area 1 16. If we continue forever, we
will subdivide the unit square (which has area 1) into
squares of area 1 2, 1 4, 1 8, . . . , verifying that

n 1

1

2n
1.

Note that although we were able to find an explicit
formula for the partial sums sn in Example 1, this is not possible in general.

Our next example shows a series an which diverges even though the sequence an

gets arbitrarily small, thereby demonstrating that the difference between convergent and
divergent series is quite subtle.

Example 2 (The Harmonic Series). The series
n 1

1

n

1

2

3

1 2 3 4 5 6 7 8 9 10

an

sn

diverges.

Solution. The proof we give is due to the French
philosopher Nicolas Oresme (1323–1382), and stands
as one of the pinacles of medieval mathematical achieve-
ment. We simply group the terms together so that each group sums to at least 1 2:
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n 1

1

n
1

1

2

1

3

1

4

2 1

4

1

2

1

5

1

6

1

7

1

8

4 1

8

1

2

1

9

1

10

1

11

1

12

1

13

1

14

1

15

1

16

8 1

16

1

2

1
1

2

1

2

1

2

1

2
,

and therefore the series diverges.

The name of this series is due to Pythagoras, and his first experiments with music.
Pythagoras noticed that striking a glass half-full of water would produce a note one oc-
tave higher than striking a glass full of water. A glass one-third full of water similarly
produces a note at a “perfect fifth” of a whole glass, while a glass one-quarter full pro-
duces a note two octaves higher, and a glass one-fifth full produces a “major third.” These
higher frequencies are referred to as harmonics, and all musical instruments produce har-
monics in addition to the fundamental frequency which they are playing (the instrument’s
“timbre” describes the amounts in which these different harmonics occur). This is what
led Pythagoras to call the series 1 1 2 1 3 the harmonic series.

Example 3. Suppose that scientists measure the total yearly precipitation at a certain point
for 100 years. On average, how many of those years will have record high precipitation?

Solution. Suppose that the data is uncorrelated from year to year (in particular, that the
amount of precipitation one year has no effect on the precipitation the next), and that the
data shows no long-term trends (such as might be suggested if the climate were changing).
In other words, suppose that the precipitations by year are independent identically distributed
random variables.

Letting an denote the amount of precipitation in the nth year, the question asks: for
how many values n can we expect an to be the maximum of a1, . . . , an? By definition, a1

is a maximum. The second year precipitation, a2, then has a 1 2 of being the maximum
of a1, a2, while in general there is a 1 n chance that an is the maximum of a1, . . . , an. This
shows that the expected number of record high years of precipitation is

1
1

2

1

3

1

100
.
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The value of this sum is approximately 5.18738, so this is the expected number of record
high years of precipitation.

Example 2 provides a bit of intuition as to why the harmonic series diverges. Suppose
that the precipitation data is collected forever. Then the expected number of record years
is 1 n. On the other hand, it seems natural that we should expect to see new record
years no matter how long the data has been collected, although the record years will occur
increasingly rarely. Therefore we should expect the harmonic series to diverge.

By making half the terms of the harmonic series negative, we obtain a convergent se-
ries:

Example 4 (The Alternating Harmonic Series). The series

n 1

1 n 1

n
1

1

2

1

3

1

4

1

5

1

6

1

7

1

8

converges.

Solution. Let sn denote the nth partial sum of this
1

an

sn

series. If we group the first 2n terms in pairs, we have

s2n 1
1

2

1

3

1

4

1

2n 1

1

2n
.

Since 1 1 2, 1 3 1 4, and so on, each of these groups
is positive. Therefore s2n 2 s2n, so the even partial
sums are monotonically increasing.

Moreover, by grouping the terms in a different way,

s2n 1
1

2

1

3

1

4

1

5

1

2n 2

1

2n 1

1

2n
,

we see that s2n 1 for all n. This shows that the sequence s2n is bounded and monotone.
The Monotone Convergence Theorem (from the previous section) therefore implies that
the sequence s2n has a limit; suppose that lim

n
s2n L.

Now we consider the odd partial sums: s2n 1 s2n 1 2n 1, so

lim
n

s2n 1 lim
n

s2n lim
n

1

2n 1
L.

Since both the even and odd partial sums converge to
the same value, the sum of the series exists and is at
most 1.
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This leaves open a natural question: what is the sum of the alternating harmonic series?
Our proof shows that the sum of this series is sandwiched between its even partial sums
(which are under-estimates) and its odd partial sums (which are over-estimates), so

1

2
1

1

2
n 1

1 n 1

n
1

1

2

1

3

5

6
,

and we could get better estimates by including more terms. Back in Euler’s time it would
be difficult to guess what this series converges to, but with computers and the web, it is
quite easy. In only a few seconds, a computer can compute that the 5 millionth partial
sum of the alternating harmonic series is approximately 0.693147, and the Inverse Symbolic
Calculator at

http://oldweb.cecm.sfu.ca/projects/ISC/

(which attempts to find “nice” expressions for decimal numbers) lists ln 2 as its best guess
for 0.693147. Exercises 46 and 47 in Section 2.4 and Exercise 24 in Section 3.1 prove that
this is indeed the sum.

We next consider the result of adding the same terms in a different order.

Example 5 (A Troublesome Inequality). The series

1
1

3

1

2

1

5

1

7

1

4

1

9

1

11

1

6
n 1

1

4n 3

1

4n 1

1

2n

does not equal 1 n 1 n, despite having the same terms.

Solution. Simplifying the inside of this series,

1

2

1 2 3 4 5 6 7 8 9 10

an

sn

1

4n 3

1

4n 1

1

2n

8n 3

4n 3 4n 1 2n

shows that it contains only positive terms. Therefore
its value is at least its first two terms added together,

n 1

1

4n 3

1

4n 1

1

2n
1

1

3

1

2

1

5

1

7

1

4

389

420

9

10
.

However, if we remove the parentheses then it is clear that the fractions we are adding in
this series are precisely the terms of the alternating harmonic series, whose value is strictly
less than 9 10. To repeat,

n 1

1

4n 3

1

4n 1

1

2n
n 1

1 n 1

n
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even though both sides contain the same fractions with the same signs!

We will explore this phenomenon more in Section 2.8. Until then, just remember that
the order in which you sum a series which has both negative and positive terms might affect the
answer. In other words, when you are adding infinitely many numbers, some of which are
positive and some of which are negative, addition is not necessarily commutative.

It is because of examples such as this that we need to be extremely careful when dealing
with series. This is why we will make sure to prove every tool we use, even when those
tools are “obvious.”

Next we consider a series which is sometimes referred to as Grandi’s series, after the
Italian mathematician, philosopher, and priest Guido Grandi (1671–1742), who studied the
series in a 1703 work.

Example 6 (An Oscillating Sum). The series
n 1

1 n 1 diverges.

Solution. While the harmonic series diverges to infinity, the series 1 1 1 1

diverges because its partial sums oscillate between 0 and 1:

sn
1 if n is odd,
0 if n is even,

so lim
n

sn does not exist.

This is an example of a series which can be shown to diverge by the first general test in
our toolbox:

The Test for Divergence. If lim
n

an 0 then an diverges.

Proof. It is easier to prove the contrapositive: if an converges, then an 0 as n . Since we
are assuming that an converges, lim

n
sn exists. Suppose that lim

n
sn L. Then

an sn sn 1 L L 0

as n 0, proving the theorem.

It is important to remember that the converse to the Test for Divergence is false, i.e.,
even if the terms of a series tend to 0, the series may still diverge. Indeed, the harmonic
series is just such a series: 1 n 0 as n , but 1 n diverges.

Before concluding the section, we make one more general observation. The conver-
gence of a series depends only on how small its “tail” is. Thus it does not matter from the
point of view of convergence/divergence if we ignore the first 10 (or the first 10 octovigin-
tillion) terms of a series:
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Tail Observation. The series
n 1

an converges if and only if its

“tail”

n N

an

converges for some value of N .

While our techniques in this section have mostly been ad hoc, our goal in this chapter
is to develop several tests which we can apply to a wide range of series. Our list of tests
will grow to include :

• The Test for Divergence

• The Integral Test

• The p-Series Test

• The Comparison Test

• The Ratio Test

• The Absolute Convergence Theorem

• The Alternating Series Test

It is important to realize that each test has distinct strengths and weaknesses, so if one test
is inconclusive, you need to push onward and try more tests until you find one that can
handle the series in question.

This is in addition to the numerous more specialized tests developed in the exercises.
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EXERCISES FOR SECTION 2.2

In all of the following problems, sn denotes the nth
partial sum of an, that is,

sn a1 a2 an.

1. If
n 1

an 3 then what are lim
n

an and

lim
n

sn?

2. If lim
n

sn 4 then what are lim
n

an and

n 1

an?

3. Compute the 4th partial sum of
n 1

2

n 2
.

4. Compute the 4th partial sum of
n 1

2

n2 2
.

In Exercises 5–10, write down a formula for an and
sum the series if it converges.

5. sn
3n 2

n 4

6. sn
3

n 4

7. sn 1 n

8. sn
n n 1

2

9. sn sin n

10. sn arctan n

Determine if the series in Exercises 11–17 diverge by
the Test for Divergence. (Note that if they do not di-
verge by the Test for Divergence, then we don’t yet
know if they converge or not.)

11.
n 1

1 nn2

3n2 2n 1

12.
n 1

sin n

n

13.
n 1

cos 1 n2

14.
n 1

1
1

n

n

15.
n 1

1

n

n

16. 3 5 7 11 13 17 , the sum of the
primes.

17. 1 3 1 5 1 7 1 11 1 13 1 17 , the sum
of the reciprocals of the primes.

In Exercises 18–21, reindex the series so that they
begin at n 1.

18.
n 2

n2

2n

19.
n 4

n2 n

n 5 3

20.
n 4

n2 n

n 5 3

21.
n 0

n sin n

n 2 3

Determine if the series in Exercises 22–25 converge
at x 2 and at x 2.

22.
n 1

xn

2n

23.
n 1

xn

n2n

24.
n 1

1 nxn

2n

25.
n 1

1 nxn

n2n

Use the rules of limits described in Exercises 31–
34 of Section 2.1 to prove the statements in Exer-
cises 26–29.

26. If an and bn are both convergent series,
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prove that

n 1

an bn

n 1

an

n 1

bn.

27. If an and bn are both convergent series,
prove that

n 1

an bn

n 1

an

n 1

bn.

28. If an is a convergent series, prove that

n 1

can c
n 1

an

for any number c.

29. If an is a divergent series, prove that

n 1

can

diverges for any number c.

30. Archimedes (circa 287 BC–212 BC) was one of
the first mathematicians to consider infinite series.
In his treatise The Quadrature of the Parabola, he uses
the figure shown below to prove that

1 4 1 4
2 1 4

3 1 3.

1 4

1 16

1 32

Explain his proof in words.

31. Prove that if an converges, then its partial
sums sn are bounded.

32. Give an example showing that the converse to
Exercise 31 is false, i.e., give a sequence an whose

partial sums are bounded but such that an does
not converge.

33. Suppose that an 0. Prove that
n 1

an con-

verges if and only if
n 1

a2n a2n 1 converges.

34. Give an example showing that the hypothesis
an 0 in Exercise 33 is necessary.

Sometimes a series can be rewritten in a such a way
that nearly every term cancels with a succeeding or
preceding term, for example,

n 1

1

n n 1
n 1

1

n

1

n 1

1
1

2

1

2

1

3

1.

These series are called telescoping. In Exercises 35–
36, express the series as telescoping series to com-
pute their sums.

35.
n 1

2n 1

n2 n 1 2
.

36.
n 2

1

fn 1fn 1

, where fn is the nth Fibonacci

number.

37. Explain why the series

n 1

1

n2
1

1

2 2

1

3 3

1

4 4

is smaller than

1
1

1 2

1

2 3

1

3 4
,

and then show that this second series 1 n n 1
is a convergent telescoping series.

Exercises 38–41 concern the situation described in
Example 2.

38. How many record years should we expect in 10
years of observations?

39. What is the probability that in 100 years of ob-
servations, the first year is the only record?

40. What is the probability that in 100 years of ob-
servations, there are only two record years?
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41. What is the probability that in 100 years of ob-
servations, there are at most three record years?

When a musical instrument produces a sound, it
also produces harmonics of that sound to some de-
gree. For example, if you play a middle A on an
instrument, you are playing a note at 440 Hz, but
the instrument also produces sounds at 880 Hz,
1320 Hz, 1760 Hz, and so on. In a remarkable ef-
fect known as restoration of the fundamental, if the
sound at 440 Hz is artificially removed, most listen-
ers’ brains will “fill it in,” and perceive the collec-
tion of sounds as a middle A nonetheless. Indeed,
your brain will perform the same feat even if several
of the first few frequencies are removed. In Exer-
cises 42–45, determine what fundamental frequency
your brain will perceive the given collection of fre-
quencies as.

42. 646 Hz, 969 Hz, 1292 Hz, 1615 Hz, . . .

43. 784 Hz, 1176 Hz, 1568 Hz, 1960 Hz, . . .

44. 789 Hz, 1052 Hz, 1315 Hz, 1578 Hz, . . .

45. Discuss how restoration of the fundamental can
be used to play music on a speaker which can’t pro-
duce low notes.

Exercises 46–48 concern the following procedure,
which was brought to my attention by Professor
Pete Winkler. Start with a1 2. At stage n, choose
an integer m from 1 to an uniformly at random (i.e.,
each number has a 1 an chance of occurring). If
m 1 then stop. Otherwise, set an 1 an 1
and repeat. For example, this procedure has a 1 2

probability of stopping after only one step, while
otherwise it goes on to the second step, with a2 3.

46. Compute the probability that this procedure
continues for at least 2 steps, at least 3 steps, and at
least n steps.

47. Compute the probability that this procedure
never terminates.

48. The expected (or average) number of steps that
this procedure takes is

n 1

n Pr the procedure takes precisely n steps .

Verify that another way to write this is

n 1

Pr the procedure takes at least n steps ,

and use this to compute the expected number of
steps that this procedure takes.

Cesàro summability, named for the Italian math-
ematician Ernesto Cesàro (1859–1906), is a differ-
ent notion of sums, given by averaging the partial
sums. Define

σn
s1 s2 sn

n
.

We say that the series an is Cesàro summable to
L if lim

n
σn L. Exercise 52 shows that if an

converges to L then an is Cesàro summable to L,
however, the converse does not hold. We explore
Cesàro summability in Exercises 49 and 50. In both
of these exercises, you should use the formulas for
sn found in the text. Exercises 52 and 53 explore the
more theoretical aspects of Cesàro summability.

49. Show that the Cesàro sum of
n 1

2 n is 1.

50. Show that the Cesàro sum of
n 1

1 n 1 is 1 2.

51. Show that
n 1

1 n 1n is not Cesàro

summable. (Compare this with Exercise 22 in Sec-
tion 3.2.)

52. Prove that if an L then an is Cesàro
summable to L.

53. Prove the result, due to Alfred Tauber (1866–
1942), that if an is a positive sequence and is
Cesàro summable to L, then an L.
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ANSWERS TO SELECTED EXERCISES, SECTION 2.2
1. lim

n
an 0, lim

n
sn 3

3. 2 3 2 4 2 5 2 6

5. an
3n 2

n 4

3 n 1 2

n 5
and the sum of the series is 3.

7. an 1 n 1 n 1 and the series diverges.

9. an sin n sin n 1 and the series diverges.

11. Diverges by the Test for Divergence

13. Diverges by the Test for Divergence

15. The terms do go to 0, so the Test for Divergence does not apply.

17. The terms do go to 0, so the Test for Divergence does not apply.

19.
n 1

n 3 2 n 3

n 3 5 3

21. The n 0 term of this series is already 0, so one answer is simply
n 1

n sin n

n 2 3
. Another correct answer

is
n 1

n 1 sin n 1

n 1 2 3
.

23. Converges at x 2 (alternating harmonic series) and diverges at x 2 (harmonic series).

25. Diverges at x 2 (harmonic series) and converges at x 2 (alternating harmonic series).


