
2. INFINITE SERIES

2.1. A PRE-REQUISITE: SEQUENCES

We concluded the last section by asking what we would get if we considered the “Taylor
polynomial of degree for the function ex centered at 0”,

1 x
x2

2!

x3

3!

As we said at the time, we have a lot of groundwork to consider first, such as the funda-
mental question of what it even means to add an infinite list of numbers together. As we
will see in the next section, this is a delicate question. In order to put our explorations on
solid ground, we begin by studying sequences.

A sequence is just an ordered list of objects. Our sequences are (almost) always lists
of real numbers, so another definition for us would be that a sequence is a real-valued
function whose domain is the positive integers. The sequence whose nth term is an is
denoted an , or if there might be confusion otherwise, an n 1, which indicates that the
sequence starts when n 1 and continues forever.

Sequences are specified in several different ways. Perhaps the simplest way is to spec-
ify the first few terms, for example

an 2, 4, 6, 8, 10, 12, 14, . . . ,

is a perfectly clear definition of the sequence of positive even integers. This method is
slightly less clear when

an 2, 3, 5, 7, 11, 13, 17, . . . ,

although with a bit of imagination, one can deduce that an is the nth prime number (for
technical reasons, 1 is not considered to be a prime number). Of course, this method com-
pletely breaks down when the sequence has no discernible pattern, such as

an 0, 4, 3, 2, 11, 29, 54, 59, 35, 41, 46, . . . .

To repeat: the above is not a good definition of a series. Indeed, this sequence is the number
of home runs that Babe Ruth hit from 1914 onward; if the Red Sox had been able to predict
the pattern, would they have sold his contract to the Yankees after the 1919 season?
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20 CHAPTER 2 INFINITE SERIES

Another method of specifying a sequence is by giving a formula for the general (nth)
term. For example,

an 2n

is another definition of the positive even integers, while an n2 defines the sequence
an 1, 4, 9, 16, 25, . . . of squares.

Example 1. Guess a formula for the general term of the sequence

3

1
,

5

4
,
7

9
,

9

16
,
11

25
, . . . .

Solution. It is good to tackle this problem one piece at a time. First, notice that the
sequence alternates in sign. Since the sequence begins with a positive term, this shows that
we should have a factor of 1 n 1 in the formula for an. Next, the numerators of these
fractions list all the odd numbers starting with 3, so we guess 2n 1 for the numerators.
The denominators seem to be the squares, so we guess n2 for these. Putting this together
we have an 1 n 1 2n 1 n2.

A sequence grows geometrically (or exponentially) if each term is obtained by multiplying
the previous term by a fixed common ratio, typically denoted by r. Therefore, letting a

denote the first term of a geometric sequence, the sequence can be defined as arn
n 0; note

here that the subscripted n 0 indicates that the sequence starts with n 0. Geometric
sequences are also called “geometric progressions”.

There is a legendary (but probably fictitious) myth involving a geometric sequence. It
is said that when the inventor of chess (an ancient Indian mathematician, in most accounts)
showed his invention to his ruler, the ruler was so pleased that he gave the inventor the
right to name his prize. The inventor asked for 1 grain of wheat for the first square of the
board, 2 grains for the second square, 4 grains for the third square, 8 grains for the fourth
square, and so on. The ruler, although initially offended that the inventor asked for so
little, agreed to the offer. Days later, the ruler asked his treasurer why it was taking so long
to pay the inventor, and the treasurer pointed out that to pay for the 64th square alone, it
would take

264 18, 446, 744, 073, 709, 551, 616

grains of wheat. To put this in perspective, a single grain of wheat contains about 1 5 of a
calorie, so 264 grains of wheat contain approximately 3, 719, 465, 121, 917, 178, 880 calories.
Assuming a 2000 calorie per day diet, the amount of wheat just for the 64th square of the
chessboard would feed 6 billion people for almost 850 years (although they should proba-
bly supplement their diet with Vitamin C to prevent scurvy). The legend concludes with

Wolfram Alpha (http://www.wolframalpha.com/) is an incredible resource for performing calculations
such as this; simply type “2ˆ64 grains of wheat” into its search box and wonder at the results.
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the ruler insisting that the inventor participate in the grain counting, in order to make sure
that it is “accurate,” an offer which the inventor presumably refused.

While sequences are interesting in their own right, we are mostly interested in apply-
ing tools for sequences to our study of infinite sums. Therefore, the two most important
questions about sequences for us are:

Does the sequence converge or diverge?
If the sequence converges, what does it converge to?

Intuitively, the notion of convergence is often quite clear. For example, the sequence

0.3, 0.33, 0.333, 0.3333, . . .

converges to 1 3, while the sequence

1 n 1 1, 1 2, 1 3, 1 4, . . . ,

converges to 0. Slightly more formally, the sequence an converges to the number L if
by taking n large enough, we can make the terms of the sequence as close to L as we
like. By being a bit more specific in this description, we arrive at the formal definition of
convergence below.

Converges to L. The sequence an is said to converge to L if for
every number ε 0, there is some number N so that an L ε for
all n N .

To indicate that the sequence an converges to L, then we may write

lim
n

an L,

or simply
an L as n .

Before moving on, we check one of our previous observations using the formal defini-
tion of convergence.

Example 2. Show, using the definition, that the sequence 1 n converges to 0.

Solution. Let ε 0 be any positive number. We want to show that

an 0 1 n ε

for sufficiently large n. Solving the above inequality for n, we see that an 0 ε for all
n 1 ε, proving that 1 n 0 as n .
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In practice, we rarely use the formal definition of convergence for examples such as
this. After all, the numerator of 1 n is constant and the denominator increases without
bound, so it is clear that the limit is 0. Many types of limits can be computed with this
reasoning and a few techniques, as we show in the next two examples.

Example 3. Compute lim
n

7n 3

5n n
.

Solution. A common technique with limits is to divide both the numerator and denom-
inator by the fastest growing function of n involved in the expression. In this case the
fastest growing function of n involved is n (choosing 7n would work just as well), so we
divide by n:

lim
n

7n 3

5n n
lim

n

n

n

7 3 n

5 n n
lim

n

7 3 n

5 1 n
.

As n , 3 n 0 and 1 n 0, so the limit of this sequence is 7 5.

Example 4. Determine the limit as n of the sequence n 2 n .

Solution. Here we use another frequent technique: when dealing with square roots, it is
often helpful to multiply by the “conjugate”:

n 2 n n 2 n
n 2 n

n 2 n

2

n 2 n
.

Now we can analyze this fraction instead. The numerator is constant and the denominator
grows without bound, so the sequence converges to 0.

You should convince yourself that a given sequence can converge to at most one num-
ber. If the sequence an does not converge to any number, then we say that it diverges.
There are two different types of divergence, and it is important to distinguish them. First
we have the type of divergence exhibited by the sequence n! :

Diverges to Infinity. The sequence an is said to diverge to infinity
if for every number " 0, there is some number N so that an "

for all n N .

If the sequence an diverges to infinity, then we write lim
n

an . Note that the

sequence 1 n 1, 1, 1, 1, . . . demonstrates a different type of divergence, which
is sometimes referred to as “oscillatory divergence.” Both types of divergence show up in
our next example.

Example 5. Showing, using only the definition of convergence, that:
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(a) lim
n

rn if r 1,

(b) lim
n

rn 1 if r 1,

(b) lim
n

rn 0 if 1 r 1 (i.e., if r 1),

(c) lim
n

rn does not exist if r 1.

Solution. Beginning with (a), assume that r 1 and fix a number M 1. By taking
logarithms, we see that rn M if and only if ln rn ln M , or equivalently, if and only if

n ln r ln M.

Since both M and r are greater than 1, ln r, ln M 0. This shows that rn ln M for all
n ln M ln r, proving that ln rn when r 1.

Part (b) is obvious, as 1n 1 for all n.
For part (c), let us assume that r 1. We want to prove that lim

n
rn 0, which means

(according to our definition above) that for every ε 0, there is some number N so that

rn 0 rn r n ε

for all n N . Again taking logarithms, this holds if n ln r ln ε. Since r 1, its
logarithm is negative, so when we divide both sides of this inequality by ln r we flip the
inequality. This r n ε for all n ln ε ln r , proving that lim

n
rn 0 when r 1.

This leaves us with (d). We have already observed that the sequence 1 n diverges,
so suppose that r 1. In this case the sequence rn can be viewed as a “shuffle” of two
sequences, the negative sequence r, r3, r5, . . . and the positive sequence r2, r4, r6, . . . .
By part (a), r2n r2 n as n , while r2n 1 r r2n as n , so in this
case the sequence rn does not have a limit.

Another way to specify a sequence is with initial conditions and a recurrence. For
example, the factorials can be specified by the recurrence

an n an 1 for n 2,

and the initial condition a1 1.

If the inventor of chess had been extremely greedy, he would have asked for 1! grains of wheat for the first
square, 2! grains of wheat for the second square, 3! grains of wheat for the third square, and so on, because

64! 126, 886, 932, 185, 884, 164, 103, 433, 389, 335, 161, 480, 802, 865, 516,

174, 545, 192, 198, 801, 894, 375, 214, 704, 230, 400, 000, 000, 000, 000,

almost 127 octovigintillion, and about a billion times the estimated number of atoms in the universe.
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A more complicated recurrence relation is provided by the Fibonacci numbers fn n 0,
defined by

fn fn 1 fn 2 for n 2,

and the initial conditions f0 f1 1. This sequence begins

fn n 0 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, . . . .

We now make an important definition. In this definition, note that we twist the notion
of “increasing” a bit; what we call increasing sequences should really be called “nonde-
creasing sequences”, but this awkward term is rarely used.

Monotone Sequences. The sequence an is (weakly) increasing if
an an 1 for all n, and (weakly) decreasing if an an 1 for all n. A
sequence is monotone if it is either increasing or decreasing.

It is good to practice identifying monotone sequences. Here are a few examples to
practice on:

• 1 n is decreasing,

• 1 1 n is increasing,

•

n

n2 1
is decreasing.

You should also verify that the geometric sequence arn is decreasing for 0 r 1,
increasing for r 1, and not monotone if r is negative.

It is frequently helpful to know that a given sequence converges, even if we do not
know its limit. We have a powerful tool to establish this for monotone sequences. First,
we need another definition.

Bounded Sequences. The sequence an is bounded if there are
numbers " and u such that " an u for all n.

For monotone sequences, boundedness implies convergence:

The Monotone Convergence Theorem. Every bounded mono-
tone sequence converges.
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We delay the proof of this theorem to Exercise 92. Knowing that a limit exists can
sometimes be enough to solve for its true value, as our next example demonstrates.

Example 6. Prove that the sequence defined recursively by a1 2 and

an 1

2an

1 an

for n 1 is decreasing, and use the Monotone Convergence Theorem to compute its limit.

Solution. First we ask: for which values of n is an an 1? Substituting the definition of
an 1, this inequality becomes

an
2an

1 an
,

which simplifies to a2
n an. So we have our answer: an an 1 whenever an 1. We are

given that a1 2, so a1 a2. For the other values of n, notice that if an 1, then

an 1

2an

1 an

an an

1 an

1 an

1 an
,

so since a1 1, we see that a2 1, which implies that a3 1, and so on. In the end, we
may conclude that an 1 for all values of n. By our work above, this shows that an an 1

for all values of n, so the sequence is decreasing.
When dealing with monotone sequences, a common technique is to first prove that the

sequence has a limit, and then use this fact to find the limit. In order to prove that an has
a limit, we need to show that it is bounded. From our previous work, we know that an 1

for all n, and an upper bound is also easy:

an 1

2an

1 an

2an

an
2.

Therefore, 1 an 2 for all n, so the sequence an has a limit.
Let L denote this limit. Then we have

an 1

2an

1 an
L

as n . But as n , an as well, so we must have

2L

1 L
L,

which simplifies to L2 L. There are two possible solutions, L 0 and L 1, but we
can rule out L 0 because it lies outside of our bounds, so it must be the case that this
sequence converges to 1.

For the rest of the section, we study some other methods for computing limits. One
technique to find the limit of the sequence an is to “sandwich” it between a lower bound
"n and an upper bound un .
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The Sandwich Theorem. Suppose the sequences an , "n , and
un satisfy "n an un for all large n and "n L and un L

then an L as well.

The Sandwich Theorem hopefully seems intuitively obvious. We ask the reader to
give a formal proof in Exercise 94. Examples 7 and 8 illustrate its use.

Example 7. Compute lim
n

sin n

n
. 1

Solution. For all n we have

1

n

sin n

n

1

n
,

so since 1 n 0 and 1 n 0,
sin n

n
0 by the Sand-

wich Theorem.

Example 8. Show that lim
n

n!

nn
0. 1

1 2 3 4 5 6 7 8 9 10

Solution. Evaluating this limit merely requires find-
ing the right bound:

n!

nn

n

n

n 1

n

2

n

1

n
,

1

n

so n! nn is sandwiched between 0 and 1 n. Since 1 n

0 and 0 is 0, we see by the Sandwich Theorem that n! nn 0.

The following useful result allows us to switch from limits of sequences to limits of
functions.

Theorem. If an is a function satisfying an f n and lim
x

f x

exists, then lim
n

an lim
x

f n .

Proof. If lim
n

f x L then for each ε 0 there is a number N such that f x L ε whenever

x N . Of course, this means that an L ε whenever n N , proving the theorem.

In 1942, Arther Stone and John Tukey proved a theorem called the Ham Sandwich Theorem, which states
that given any sandwich composed of bread, ham, and cheese, there is some plane (i.e., straight cut) that slices
the sandwich into two pieces, each containing the same amount of bread, the same amount of ham, and the
same amount of cheese.
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Why might we want to switch from sequences to functions? Generally we do so in
order to invoke l’Hôpital’s Rule :

l’Hôpital’s Rule. Suppose that c is a real number or c , and
that f and g are differentiable and g x 0 near c (except possibly
at x c). If either

lim
x c

f x lim
x c

g x 0

or
lim
x c

f x lim
x c

g x

then

lim
x c

f x

g x
lim
x c

f x

g x
,

provided that this limit exists.

Example 9. Compute lim
n

ln n

n
. 1

1 2 3 4 5 6 7 8 9 10

Solution. We know that

lim
n

ln n

n
lim

x

ln x

x
,

and we can use l’Hôpital’s Rule to evaluate this sec-
ond limit since both lnx and x tend to as x :

lim
x

ln x

x
lim

x

d

dx
ln x

d

dx
x

lim
x

1

x
1

lim
x

1

x
0.

This shows that lim
n

ln n

n
0.

Another very useful result allows us to “move” limits inside continuous functions:

The Continuous Function Limits Theorem. Suppose the se-
quence an converges to L and that f is continuous at L and
defined for all values an. Then the sequence f an converges to
f L .

l’Hôpital’s Rule is one of the many misnomers in mathematics. It is named after Guillaume de l’Hôpital
(1661–1704) because it appeared in a calculus book he authored (the first calculus book ever written, in fact),
but l’Hôpital’s Rule was actually discovered by his mathematics tutor, Johann Bernoulli (1667–1748). The two
had a contract entitling l’Hôpital to use Bernoulli’s discoveries however he wished.
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We conclude the section with two examples using this theorem.

Example 10. Compute lim
n

sin
π

2

1

n
.

Solution. Since 1 n 0 as n ,

lim
n

π

2

1

n

π

2
.

Therefore,

lim
n

sin
π

2

1

n
sin

π

2
1,

by the Continuous Function Limits Theorem.

Our final example is less straight-forward, but more important.

Example 11. Compute lim
n

1
1

n

n

.

Solution. As with most problems which have a variable in the exponent, it is a good idea
to rewrite the limit using e and ln:

lim
n

1
1

n

n

lim
n

eln 1 1

n

n

lim
n

en ln 1 1

n

Consider only the exponent for now, n ln 1 1
n

. This is an 0 indeterminate form, so
we rewrite it to give a 0

0
form:

n ln 1
1

n

ln 1 1
n

1
n

.

Applying l’Hôpital’s Rule, we see that

lim
n

ln 1 1
n

1
n

lim
n

1
n2

1
n2

1.

Thus the exponents converge to 1. Because ex is a continuous function, we can now apply
the Continuous Function Limits Theorem to see that

lim
n

e
n ln 1

1

n e
lim

n
n ln 1

1

n e1 e,

so the solution to the example is e.
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A wonderful resource for integer sequences is the On-Line Encyclopedia of Integer Se-
quences, maintained by Neil Sloane (1939–), available at

http://www.research.att.com/~njas/sequences/

The encyclopedia currently contains more than 165,000 sequences. Each of these sequences
is numbered, and so the sequence also contains a sequence an (number 91,967) in which
an is the nth term of the nth sequence. What is a91967?

EXERCISES FOR SECTION 2.1

Write down a formula for the general term, an, of
each of the sequences in Exercises 1–8.

1. 3, 5, 7, 9, 11, . . .

2. 4, 16, 64, 256, 1024, . . .

3. 2, 4, 8, 16, 32, . . .

4. 5 2, 7 5, 9 10, 11 17, 13 26, . . .

5. 3, 1, 3, 1, 3, . . .

6. 4 3, 7 9, 10 27, 13 81, 16 243, . . .

7. 1 2, 2 4, 6 8, 24 16, 120 32, . . .

8. 2, 4 2, 6 4 2, 8 6 4 2, 10 8 6 4 2, . . . (Try to
find something simpler than 2n 2n 2 4 2).

Exercises 9–12 give initial terms and recurrence re-
lations for sequences. Use these to compute the first
5 terms and try to write a formula for the general
term, an.

9. a1 2, an an 1 3

10. a1 2, an nan 1

11. a1 1, an an 1 n

12. a1 1, an n3an 1

13. Suppose that an is a geometric sequence. If
a2 6 and a5 162, what are the possibilities for
a1?

14. Suppose that an is a geometric sequence. If
a2 2 and a4 6, what are the possibilities for a1?

Determine if the sequences in Exercises 15–22 con-
verge or diverge. If they converge, find their limits.

15. an
7n 5

4n 2

16. an
7n 5

4n 2

17. an
7n3 5

4n3 2

18. an
7 4 n 5

4 4 n 2

19. an 2n 2 2n

20. an 2n 2 2n

21. an 2 arctan 3n2

22. an 2 arctan n 10

Compute the limits in Exercises 23–30.

23. lim
n

7n 5

4n 2

24. lim
n

n 2 !

n! 3 5n 2

25. lim
n

5n

ln 2 3en

26. lim
n

n 2 !

n2n!

27. lim
n

ln n

ln 3n

28. lim
n

e1 n
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29. lim
n

n 2n

30. lim
n

7n 3 5 n

Prove the limit laws states in Exercises 31–34.

31. If an and bn are convergent sequences,

lim
n

an bn lim
n

an lim
n

bn.

32. If an and bn are convergent sequences,

lim
n

an bn lim
n

an lim
n

bn.

33. If an and bn are convergent sequences,

lim
n

anbn lim
n

an lim
n

bn .

34. If an is a convergent sequence, then

lim
n

can c lim
n

an

for any number c.

Compute the limits in Exercises 35–42. All of these
limits are either 0 or infinity, explanation is re-
quired, but you need not apply l’Hôpital’s Rule.

35. lim
n

nn

n!

36. lim
n

n!

4n

37. lim
n

n1 4

lnn 4

38. lim
n

2n 1 10

en

39. lim
n

n

n 3 ln n

40. lim
n

n3 2n

n7 2n6

41. lim
n

n 2

lnn 10

42. lim
n

3n2 n

4n2 1

n

43. Arrange the functions

n, nn, ln n, 3n, n ln n, 2n2

, n6 1

in increasing order, so that (for large n) each func-
tion is very much larger than the one that it follows.

44. Where does n! fit in the list you made for Exer-
cise 43?

45. Define the sequence an recursively by

an 1

2an

1 an
.

Show that if a1
1 2 then an is increasing. (Com-

pare this to the result of Example 6).

46. Define the sequence an recursively by

an 1

3 3an

3 an
.

Show that if a1 1 then an is increasing, while if
a1 2 then an is decreasing.

In Exercises 47–50, compute the integral to give
a simplified formula for an and then determine
lim

n
an.

47. an

n

1

1

x
dx

48. an

n

1

1

x2
dx

49. an

n

1

1

x ln x
dx

50. an

n

1

1

x ln x 2
dx

51. What is lim
n

1
2

n

n

? More generally, what

is lim
n

1
x

n

n

?

52. Let sn denote the sequence given by 1 2, 1 2

1 4, 1 2 1 4 1 8, 1 2 1 4 1 8 1 16, . . . . Conjecture
a formula for sn. What does this mean for lim

n
sn?

Recall that the function f x is periodic with period
p if f x p f x for all values of x. Similarly,
the sequence an n 1 is periodic with period p if
an p an for all n 1 and p is the least number
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with this property. Determine the periods of the se-
quences in Exercises 53–56.

53. sin nπ n 1

54. cos
nπ

m n 1

55. cos
nπ

m
sin

nπ

m n 1

56. sin2 nπ

m

m

n 1

Compute the sequence f 0 , f 0 , f 0 , f 3 0 , . . .

of derivatives for the functions f x listed in Exer-
cises 57–63.

57. f x ex

58. f x sin x

59. f x cosx

60. f x sin 2x

61. f x xex

62. f x 1 x 3

63. f x 1 x

64. Consider the sequence of figures below.

Let an denote the number of non-overlapping small
squares in these figures, so a1 1, a2 5, a3 13,
and a4 25. Write a formula for an. Hint: it may
be helpful to consider the squares that are missing
from the figures.

Exercises 65 and 66 concern the following sequence.
Choose n points on a circle, and join each point to
all the others. This divides the circle into a number,
say an, of regions. For example, a1 1 (by defini-
tion), a2 2, and a3 4:

65. Compute a4 and a5. Based on the first 5 terms
of the sequence, conjecture a formula for the general
term an.

66. Compute a6. Does this match your conjecture?

67. (Due to Solomon Golomb (1932–)) There is a
unique sequence an of positive integers which is
nondecreasing and contains exactly an occurrences
of the number n for each n. Compute the first 10
terms of this sequence.

68. Define the sequence an recursively by

an 1

an 2 if an is even,
3an 1 if an is odd.

Compute this sequence when a1 13 and a1 24.
The 3n 1 Conjecture, first posed by Lothar Collatz
(1910–1990) in 1937 but still unproved, states that if
you start with any positive integer as a1 then this
sequence will eventually reach 1, where it will end
in the infinite periodic sequence 1, 4, 2, 1, 4, 2, . . . .
About this conjecture, the prolific Hungarian math-
ematician Paul Erdős (1913–1996) said “mathemat-
ics is not yet ready for such problems.”

69. Compute the first 10 terms of the sequence
an n2 n 41. What do these numbers have
in common?

70. Do all terms in the sequence of Exercise 69
share this property?

Amazingly, an is the nearest integer to ϕ2 ϕnϕ 1 where ϕ
1 5

2
denotes the golden ratio.
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71. It has been known since Euclid (see also Ex-
ercises 32–34 in Section 2.3) that there are infinitely
many primes , but how far apart can they be? Prove
that for any positive integer n, the sequence

n! 2, n! 3, . . . , n! n

contains no prime numbers.

72. Let an denote the sum of the integers 1 up to
n, so a4 1 2 3 4 10. Compute the first 6
terms of an. Can you give a formula for an?

73. Say that a number is polite if it can be writ-
ten as the sum of two or more consecutive pos-
itive integers. For example, 14 is polite because
14 2 3 4 5. Let an denote the nth polite
number. Compute the first 6 terms of an. Do you
spot a pattern?

74. A composition of the integer n is a way of writing
n as a sum of positive integers, in which the order
of the integers does matter. For example, there are
eight partitions of 4: 4, 3 1, 1 3, 2 2, 2 1 1,
1 2 1, 1 1 2, and 1 1 1 1. Let an denote
the number of compositions of n. Compute the first
6 terms of an. Can you conjecture a formula?

75. Let an denote the number of compositions of n

into 1s and 2s. Relate an to a sequence from this
section.

76. For n 2, let an denote the number of compo-
sitions of n into parts greater than 1. Relate an to
a sequence from this section.

77. A partition of the integer n is a way of writing
n as a sum of positive integers, in which the order
of the integers does not matter. For example, there
are five partitions of 4: 4, 3 1, 2 2, 2 1 1, and
1 1 1 1. Let an denote the number of parti-
tions of n. Compute the first 6 terms of an. Can you
conjecture a formula?

78. Prove that every infinite sequence an has
an infinite monotone subsequence ai1 , ai2 , ai3 , . . .
(with i1 i2 ). Hint: a sequence without
a greatest element must clearly have an infinite in-
creasing subsequence. So suppose that an has a

greatest element, ai1 . Now consider the sequence
ai1 1, ai1 2, . . . .

79. Prove that every sequence a1, a2, . . . , an2 1

of length n2 1 has a monotone subsequence
ai1 , ai2 , . . . , ain 1

(with i1 i2 in 1) of
length at least n 1. Hint: let di denote the longest
weakly increasing subsequence beginning with ai,
i.e., the largest m so that you can find ai ai1

ai2 aim for i i1 i2 im. If di n
for all i 1, 2, . . . , n2 1, how many terms of the
sequence must share the same di? What does this
mean for that subsequence? This result is known as
the Erdős-Szekeres Theorem, after Paul Erdős and
George Szekeres (1911–2005), who proved it in 1935.

80. For each positive integer n, let an denote
the greatest number which can be expressed as the
product of positive integers with sum n. For exam-
ple, a6 9 because 3 3 is the greatest product of
positive integers with sum 6. Find a formula for an.

Describe the sequences in Exercises 81–84. Warning:
some of these have very creative definitions. You
should use all tools at your disposal, including the
Internet.

81. 1, 2, 4, 6, 10, 12, 16, 18, . . .

82. 1896, 1900, 1904, 1906, 1908, 1912, 1920, 1924, . . .

83. 3, 3, 5, 4, 4, 3, 5, 5, . . .

84. 1, 2, 3, 2, 1, 2, 3, 4, . . .

85. How many 0s are there in the decimal ex-
pansion of 10!? What about 50! and 100!? Hint: the
number of 0s is equal to the number of 10s which
divide these numbers. These 10s can come by mul-
tiplying a number divisible by 10 itself, or by multi-
plying a number divisible by 5 by a number divisi-
ble by 2.

86. How many ways are there to order a deck of
cards so that each of the suits is together?

The distinguished Israeli mathematician Noga Alon recounts:

“I was interviewed in the Israeli Radio for five minutes and I said that more than 2000 years ago,
Euclid proved that there are infinitely many primes. Immediately the host interuppted me and
asked: ‘Are there still infinitely many primes?”’
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87. How many ways are there to order a deck of
cards so that all of the spades are together? (But the
cards of the other suits may be in any order.)

88. Use the figure below to conjecture and prove
a simplified formula for the sum n

k 0
f2

k , where fk

denotes the kth Fibonacci number.

1 1

2
3

5

8

In addition to their recurrence, Fibonacci numbers
can also be described in a more concrete way: the
nth Fibonacci number fn counts the number of dif-
ferent ways to tile a board of size n 1 using
“squares” of size 1 1 and “dominos” of size 2 1.
For example, f4 5 because there are four ways to
tile a 4 1 board with these pieces:

89. Verify that the nth Fibonacci number counts
the different ways to tile an n 1 board using 1 1
squares and 2 1 dominos.

This interpretation can be quite useful in proving
identities involving the Fibonacci numbers. Con-
sider, for example, the identity

f2n f2
n f2

n 1.

In order to show that this holds for all n 1, since
f2n counts tilings of a 2n 1 board, we need only
show that there are f2

n f2
n 1 such tilings. Take a

particular tiling of a 2n 1 board and chop it into
two n 1 boards. There are two possibilities. First,
we might chop the board into two tilings of an n 1
board, as shown below with an 8 1 board:

Secondly, we might chop through a 2 1 domino,
thereby getting two n 1 1 tilings:

The number of n 1 tilings is fn, so there are f2
n

ways in which our chop could break up the 2n 1
tiling in the first manner. Similarly, the number of
n 1 1 tilings is fn 1, so there are f2

n 1 in which
our chop could break up the 2n 1 tiling in the sec-
ond manner. Therefore, since we have accounted
for all 2n 1 tilings, we see that f2n f2

n f2
n 1, as

desired.
Give similar arguments to verify the identities

in Exercises 90 and 91.

90. Prove that
n

k 0

fk fn 2 1.

91. Prove that f3n 2 f3
n 1 3f2

n 1fn f3
n.

92. Prove the Monotone Convergence Theorem
in the case where the sequence is monotonically in-
creasing.

93. Prove that the converse to the Monotone Con-
vergence Theorem is also true, i.e., that every mono-
tone sequence that is not bounded diverges.

94. Prove the Sandwich Theorem.
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ANSWERS TO SELECTED EXERCISES, SECTION 2.1
1. an 2n 1

3. an 1 n 12n

5. an
3 if n is odd,
1 if n is even.

7. an
n!

2n

9. 2, 5, 8, 11, 14, . . . , an 3n 1

11. 1, 3, 6, 10, 15, . . . , an
n n 1 2

13. The common ratio must be 3, so a1 2.

15. Converges to 7 4.

17. Converges to 7 4.

19. Converges to 0.

21. Converges to π.

23. Converges to 7 4.


