
1. TAYLOR POLYNOMIALS

1.1. APPROXIMATING BY MATCHING DERIVATIVES

Our starting point for exploring series, Taylor polynomials, are at the center of how cal-
culators and computers compute (and graph) most functions. So far you have most likely
taken for granted that quantities like sin 1 2 or e0.2 can be computed, but have you ever
stopped to wonder how?

Consider sin 1 2 first. (Here and in all that follows, angles will be specified in radians,
not degrees, although in this case the point remains the same.) If you were asked to com-
pute sin 1 2 to a high degree of accuracy, what would you do? You could of course reach for
your protractor, draw a right triangle with angle 1 2 radians, then measure (with a ruler)
the opposite side and hypotenuse and divide them (indeed, this is essentially what the an-
cient Egyptians and Greeks did), but how sure of your calculation would you be? Would
your calculation be accurate to 2 decimal places? What about 5 or 10? More troubling, how
could you ever be sure, if you didn’t have a calculator to check it against?
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Figure 1.1: Approximating sin 1 2 by drawing a triangle and measuring to the near-
est millimeter. This triangle shows that sin 1 2 24 50 0.48. In fact, sin 1 2

0.4794255386 . . .

The approach we take here is to find polynomials which approximate sinx.

Example 1. Approximate sinx near x 0 using a polynomial of degree 5,

p x c0 c1x c2x
2 c3x

3 c4x
4 c5x

5.
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Solution. We have to decide on the “best” constants c0, c1, c2, c3, c4, c5 to use for this
approximation. Let’s start with c0. We have that p 0 c0 (all the other terms involve an x

and so they vanish once we set x 0). Moreover, sin 0 0, so it makes sense to set c0 0.
(If we didn’t set c0 0, then p x and sin x would disagree at x 0, which is a bad way to
start.)

Now what should we do for c1? This is a much more open-ended question. The ap-
proach we will use is to “match derivatives,” beginning with the first derivative. Since

p x c1 2c2x 3c3x
2 4c4x

3 5c5x
4 and

sin x cos x,

we see that

p 0 c1 and

sin 0 1,

so we set c1 cos 0 1. Believe it or not, we already have a decent approximation, which
is used quite frequently, namely sin x x for small x.
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This approximation gives sin 1 2 0.5, which is decent, but not as close as our triangle in
Figure 1.1.

Now that we’ve found a good value for c1, we match second derivatives to solve for c2:

p x 2 1 c2 3 2 c3x 4 3 c4x
2 5 4 c5x

3 and

sin x sin x,

we set p 0 2 1 c2 sin 0 0, so c2 0. For c3, we match third derivatives:

p x 3 2 1 c3 4 3 2 c4x 5 4 3 c5x
2 and

sin x cosx,

This shows that we should have 3 2 1 c3 1, so c3
1 6 in order to match third

derivatives. Indeed, by ignoring the c4 and c5 terms we get an even better approximation
to sin x near x 0, x x3 6, plotted below.
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This approximation gives sin 1 2 0.47916666 . . . . This is already closer to the true value
of sin 1 2 than our triangle before.

Using the same approach for c4, we see

p 4 x 4 3 2 1 c4 5 4 3 2 c5x and

sin 4 x sin x,

so p 4 0 4 3 2 1 c4 sin 0 0. To conclude our example, we match fifth derivatives:

p 5 x 5 4 3 2 1 c5 and

sin 5 x cos x,

so c5

1

5 4 3 2 1

1

120
. Comparing the graphs of sin x and x x3 6 x5 120, we see

that this is an ever better approximation:
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This approximation gives sin 1 2 0.4794270834, which is correct to 5 decimal places.

Example 1 is our first encounter with Taylor polynomials. In fact, the polynomial p x

that we computed is known as the Taylor polynomial of degree 5 for the function sin x centered
at 0. In general, the Taylor polynomial of degree n for the function f x centered at a is the
polynomial Tn x that matches f x and its first n derivatives at x a:

Taylor Polynomials. Suppose that f x has n derivatives at the
point x a. Then the Taylor polynomial of degree n for f x

centered at a, denoted Tn x , is the unique polynomial of degree
n which satisfies

Tn a f a

Tn a f a

Tn a f a

...

T n
n a f n a

Note that we write Tn x for the Taylor polynomial of degree n no matter where it is
centered, i.e., no matter what a happens to be. These polynomials are named after the En-
glish mathematician Brook Taylor (1685–1731), who discussed them in a 1715 work. How-
ever, the importance of Taylor polynomials was not realized until after Taylor’s death,
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when the Italian mathematician and astronomer Joseph Louis Lagrange (1736–1813) de-
clared them to be “the main foundation of differential calculus.”

We have just defined Taylor polynomials in terms of their most important property —
they match derivatives. It is possible to state this definition in a more formulaic manner.
We first state the formula, then explain all the terms involved, then prove it.

Formula for Taylor Polynomials. Suppose that f x has n deriva-
tives at the point x a. Then the Taylor polynomial of degree n for
f x centered at a is

Tn x f a
f a

1!
x a

f a

2!
x a 2 f n a

n!
x a n.

The exclamation marks in this theorem may be new to you. These are called factorials.
The factorial of the integer n is n! n n 1 n 2 2 1; it is the product of all of
the integers between 1 and n (inclusive). The factorial function grows very quickly, much
more quickly than any polynomial or even exponential function. This will be important.

Proof. Proving this formula is quite easy. Let

Tn x f a
f a

1!
x a

f a

2!
x a 2

f n a

n!
x a n.

Then we have

Tn x f a
f a

1!
x a

f a

2!
x a 2

f n a

n!
x a n

Tn x f a
f a

1!
x a

f n a

n 1 !
x a n 1

Tn x f a
f n a

n 2 !
x a n 2

...

T k
n f k a

...

T n
n f n a .

Substituting x a into these equalities verifies that the formula given satisfies the definition of the

Taylor polynomial of degree n for f x centered at a.

We define 0! 1 in order to make this formula easier to write. We also define f 0 a ,
the “zeroth derivative of f at a”, to be just f a . This lets us express the Taylor polynomial
as
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Formula for Taylor Polynomials, Summation Form.

Tn x
n

k 0

f k a

k!
x a k.

Here we have used yet another new piece of notation a capital Greek sigma . This

symbol stands for “sum,” and in the above it means “add together
f k a

k!
x a k for each

integer k from 0 to n.”

Example 2. Compute the Taylor polynomial of degree 4 for the function f x ex cen-
tered at x 0.

Solution. We begin by constructing a table of derivatives:

f x ex f 0 1

f x ex f 0 1

f x ex f 0 1
...

...

This table demonstrates that all the derivatives of ex at 0 are equal to 1. So the Taylor
polynomial of degree 4 for ex centered at a 0 is:

T4 x
1

0!
x 0 0 1

1!
x 0

1

2!
x 0 2 1

3!
x 0 3 1

4!
x 0 4.

Of course we would never want to write it that way, instead simplifying to

T4 x 1 x
x2

2

x3

6

x4

24
.

Plotting this against f x ex,

1

2

3

1123



6 CHAPTER 1 TAYLOR POLYNOMIALS

we see that it is a good approximation for ex near x 0.

Example 3. Compute the Taylor polynomial of degree 4 for the function f x sin x

centered at a π 4.

Solution. Again we begin with a table of derivatives:

f x sin x f π 4 2 2

f x cos x f π 4 2 2

f x sin x f π 4 2 2

f x cos x f π 4 2 2

f 4 x sin x f 4 π 4 2 2

Therefore the Taylor polynomial is

T4 x
2

2

2

2
x

π

4

2

2 2!
x

π

4

2 2

2 3!
x

π

4

3 2

2 4!
x

π

4

4

.

Comparing this to the plot of sin x shows that it is quite a good approximation near π 4:

1

1
π 2ππ2π

In fact, T3 0.5 0.4792417350 . . . , which is a closer approximation to sin 1 2 than the Taylor
polynomial of degree 3 centered at a 0.

EXERCISES FOR SECTION 1.1

Explain why none of the polynomials in Exer-
cises 1–4 are the Taylor polynomials of the function
shown below.

1

1 212

1.
1

2

x

2

x2

8
(centered at 0)

2. 1.4 0.3 x 1 1.6 x 1 2 (centered at 1)

3. 0.5 0.6 x 1 0.2 x 1 2 (centered at 1)

4. 0.5 1.5 x 2 4.4 x 2 2 (centered at 2)

Exercises 5–8 give various Taylor polynomials for
functions f x centered at 2. For each function,
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compute f 2 .

5. x 2
x 2 3

6

x 2 5

24

6. 2 x 2
3 x 2 2

2
2 x 2 3 31 x 2 4

12

7. 1
x 2 2

2

5 x 2 4

24

8. x 2 x 2 2 5 x 2 3

6

5 x 2 4

6

Compute the Taylor polynomials of degree 4 cen-
tered at 0 for the functions in Exercises 9–18.

9. f x
1

1 x

10. f x cos 2x

11. f x x sin x

12. f x ex2

13. f x 3 1 x

14. f x 2 x 3x3

15. f x 2 x 8x9

16. f x 1 x 6

17. f x x ln 1 x

18. f x cos2 x

Compute the Taylor polynomials of degree 3 cen-
tered at π for the functions in Exercises 19–22.

19. f x
sin x

x

20. f x lnx

21. f x 1

x

22. f x x 3x2

23. Explain why the Taylor polynomial of degree
1 for the function f x centered at a is the equation
of the tangent line to the graph of f at a.

24. Explain how you know that sin x and cos x are
not polynomials.

25. Explain how you know that ex is not a polyno-
mial.
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ANSWERS TO SELECTED EXERCISES, SECTION 1.1‘

1. The Taylor polynomial does not match the function at the center

3. The function is increasing at the center, but the first derivative of the Taylor polynomial is negative here

5. f 2 1

7. f 2 0

9. T4 x 1 x x2 x3 x4

11. T4 x x2 x4

6

13. T4 x 1
x

3

x2

9

5x3

81

10x4

243

15. T4 x 2 x

17. T4 x x2 x3

2

x4

3

19. T3 x 1

π
x π 1

π2 x π 2 π2
6

6π3 x π 3

21. T3 x 1

π
1

π2 x π 1

π3 x π 2 1

π4 x π 3

23. Because the Taylor polynomial of degree 1, T1 x f a f a x, matches the function and its first
derivative at x a.


