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The gradient 2

The gradient vector contains all of the directional derivative information:

Given a point(x0, y0) and a direction vector~v =< a, b >, the

directional derivative off(x, y) in the direction of~v at (x0, y0)

is

D~vf(x0, y0) = ∇f(x0, y0) · ~v
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Maximum ascent 3

In what direction does a function increase the fastest?

D~vf = ∇f · ~v

= |∇f ||~v| cos(θ)

= |∇f | cos(θ)

The right hand side is largest whencos(θ) = 1, i.e. whenθ = 0.

• A function f increases most quickly in the direction of the

gradient vector,∇f
|∇f | .

• The function decreases most quickly in the direction of

− ∇f
|∇f |

• The function has directional derivative zero in the direc-

tions perpendicular to the gradient.
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Contour plots and the gradient 4

First, we draw a contour plot of a funcitonf(x, y).
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Contour plots and the gradient 4

First, we draw a contour plot of a funcitonf(x, y).

• The contours represent the curves along whichf

is constant. So the directional derivative in those

directions is zero!
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Contour plots and the gradient 4

First, we draw a contour plot of a funcitonf(x, y).

• The contours represent the curves along whichf

is constant. So the directional derivative in those

directions is zero!

• Draw vectors representing the gradient vector at

each point.
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Contour plots and the gradient 4

First, we draw a contour plot of a funcitonf(x, y).

• The contours represent the curves along whichf

is constant. So the directional derivative in those

directions is zero!

• Draw vectors representing the gradient vector at

each point.

• Note the the vectors are perpendicular to the

curves
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Big picture 5

A closer look...
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Conclusions 6

• We can reach a (local) maximum off by following curves that are

tangent to the gradient.

• We can reach a (local) minimum off by following the curves that

are tangent to the negative of the gradient.

• Where is a max or min? At a place where the gradient vanishes!
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Local extrema 7

The critical points of a functionf(x, y) are the points(x0, y0)

where

∇f(x0, y0) = 0

All local maxima and minima occur at critical points.

Examples:

• f(x, y) = x2 + y2

• f(x, y) = x2 − 2xy + y4
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