Math. 8, Spring 1999

PRACTICE FINAL EXAM

1. Evaluate the integrals:

(a)
$$\int x^2 \cos x dx$$

(b)
$$\int \frac{\cos x}{\sin^2 x} dx$$

(c)
$$\int \frac{x^2 + 2x}{(x+1)^2} dx$$

- **2.** A certain population satisfies the growth law $\frac{dP}{dt} = \frac{2t}{3}$, where t is measured in years after January 1, 1990. On January 1, 1990, there were 500 people. How many will there be on January 1, 2000?
- 3. Determine the interval of convergence of the power series

(a)
$$\sum_{n=1}^{\infty} \frac{5^n}{\sqrt{n}} x^n$$

(b)
$$\sum_{n=0}^{\infty} \frac{3^n x^n}{n!}$$

4. Find the sum of the series and state the interval on which this sum is valid

(a)
$$\sum_{n=0}^{\infty} \frac{(-1)^n x^{4n}}{n!}$$

(b)
$$\sum_{n=0}^{\infty} \frac{(x+1)^{2n}}{9^n}$$

5. Use Maclaurin series to find $f^{(10)}(0)$ for

$$(a) f(x) = x^7 e^{3x}$$

(b)
$$f(x) = \ln(1 - 3x)$$

- **6.** Points P(1, 1, 2), Q(1, 0, 1) and R(-1, -1, 0) determine a plane T.
 - (a) Find a unit vector which is orthogonal to the plane T.
- (b) Find a vector equation of the line passing through (4,0,-5) that is perpendicular to the plane T.
- 7. Use vectors to show that the line joining the midpoints of two sides of a triangle is parallel to the third side and is half as long.
- 8. Show that the lines $\mathbf{r_1} = \langle 2-t, 4+2t, -3+4t \rangle$ and $\mathbf{r_2} = \langle 1+t, 5-3t, 3-2t \rangle$ intersect, and find an equation of the plain that contains them.
- 9. Solve the following differential equations.

(a)
$$xy' + y = \frac{1}{x}$$
, $y(1) = 2$

(b)
$$y''' + 4y' = 0$$

10. Show that the region under the curve y = 1/x on the interval $[1, \infty)$ has infinite area, but that the solid obtained by rotating this region about the x-axis has finite volume.