NON-ELEMENTARY INTEGRALS WORKSHEET

APRIL 12, 2019

1. Compute the Maclaurin series for $e^{-z^{2} / 2}$.
2. Compute the Maclaurin series for $\int e^{-z^{2} / 2} d z$.
3. Use the first six terms of your series to find an approximation for $2 \frac{1}{\sqrt{2 \pi}} \int_{0}^{1} e^{-z^{2} / 2} d z$.
4. Use the first six terms of your series to find an approximation for $2 \frac{1}{\sqrt{2 \pi}} \int_{0}^{2} e^{-z^{2} / 2} d z$.
5. Do these numbers look familiar? What do they say about the proportion of the data that lie within one and two standard deviations of the mean?
