TAYLOR SERIES WORKSHEET

APRIL 8, 2019

 $\sum_{m=0}^{\infty}(-1)^{m} \frac{x^{2 m+1}}{(2 m+1)!}$.
(a) Compute the following derivatives.

$$
\begin{aligned}
f(x) & = & f(0)= \\
f^{\prime}(x) & = & f^{\prime}(0)= \\
f^{\prime \prime}(x) & = & f^{\prime \prime}(0)= \\
f^{\prime \prime \prime}(x) & = & f^{\prime \prime \prime}(0)= \\
f^{(4)}(x) & = & f^{(4)}(0)=
\end{aligned}
$$

(b) Based on your computations above, find formulas for the even- and odd order derivatives at 0 .

$$
f^{(2 m)}(0)=
$$

$$
f^{(2 m+1)}(0)=
$$

\qquad
(c) Using the previous steps, compute the Maclaurin series for $\sin (x)$. Write out the first 5 terms of the series.
(d) Compute the interval of convergence of the Maclaurin series for $\sin (x)$.
2. As before, let $f(x)=\sin (x)$. In this exercise you will show that the Maclaurin series for $\sin (x)$ converges to $\sin (x)$, that is, $\sin (x)=\sum_{m=0}^{\infty}(-1)^{m} \frac{x^{2 m+1}}{(2 m+1)!}$ for all real x.

Let $p_{n}(x)$ be the $n^{\text {th }}$ Maclaurin polynomial and $R_{n}(x)=f(x)-p_{n}(x)$ be the $n^{\text {th }}$ remainder.
(a) Fix a real number x. What does Taylor's Theorem with Remainder say about the remainder $R_{n}(x)$?
(b) Find a bound on $f^{(n+1}(c)$ valid for any c between 0 and x and any nonnegative integer n.
(c) Using the previous steps, show that $R_{n}(x) \rightarrow 0$ as $n \rightarrow \infty$.

