TAYLOR SERIES WORKSHEET

APRIL 8, 2019

1. Let $f(x) = \sin(x)$. In this exercise you will show that the Taylor series of $\sin(x)$ is $\sum_{k=1}^{\infty} (-1)^m \frac{x^{2m+1}}{\sqrt{2}}$.

$$\sum_{m=0}^{m=0} (2m+1)!$$

(a) Compute the following derivatives.

$$f(x) = f(0) = f'(0) = f'(0) = f''(0) = f''(0) = f''(0) = f'''(0) = f'''(0) = f'''(0) = f^{(4)}(x) = f^{(4)}(0) = f^{(4)}$$

(b) Based on your computations above, find formulas for the even- and odd order derivatives at 0.

$$f^{(2m)}(0) = _$$
 $f^{(2m+1)}(0) = _$

(c) Using the previous steps, compute the Maclaurin series for sin(x). Write out the first 5 terms of the series.

(d) Compute the interval of convergence of the Maclaurin series for sin(x).

- 2. As before, let $f(x) = \sin(x)$. In this exercise you will show that the Maclaurin series for $\sin(x)$ converges to $\sin(x)$, that is, $\sin(x) = \sum_{m=0}^{\infty} (-1)^m \frac{x^{2m+1}}{(2m+1)!}$ for all real x. Let $p_n(x)$ be the n^{th} Maclaurin polynomial and $R_n(x) = f(x) p_n(x)$ be the n^{th}
 - remainder.
 - (a) Fix a real number *x*. What does Taylor's Theorem with Remainder say about the remainder $R_n(x)$?

(b) Find a bound on $f^{(n+1)}(c)$ valid for any *c* between 0 and *x* and any nonnegative integer *n*.

(c) Using the previous steps, show that $R_n(x) \to 0$ as $n \to \infty$.