CROSS PRODUCT WORKSHEET

APRIL 22, 2019

Theorem (Properties of the Cross Product). Let \vec{u}, \vec{v}, and \vec{w} be vectors and c be a scalar.
(i) $\vec{u} \times \vec{v}=-\vec{v} \times \vec{u} \quad$ (anticommutativity)
(ii) $\vec{u} \times(\vec{v}+\vec{w})=\vec{u} \times \vec{v}+\vec{u} \times \vec{w} \quad$ (distributivity)
(iii) $c(\vec{u} \times v)=(c \vec{u}) \times \vec{v}=\vec{u} \times(c \vec{v}) \quad$ (scaling property)
(iv) $\vec{u} \times \overrightarrow{0}=\overrightarrow{0}$
(v) $\vec{v} \times \vec{v}=\overrightarrow{0}$
(vi) $\vec{u} \cdot(\vec{v} \times \vec{w})=(\vec{u} \times \vec{v}) \cdot \vec{w} \quad$ (triple scalar product)

1. Given vectors $\vec{u}=\left\langle u_{1}, u_{2}, u_{3}\right\rangle$ and $\vec{v}=\left\langle v_{1}, v_{2}, v_{3}\right\rangle$, show that $\vec{u} \times \vec{v}$ is orthogonal to \vec{u}.
2. Using only the geometric interpretation of the cross product and the right-hand rule (i.e., no determinants), compute the following cross products.

$$
\begin{array}{ll}
\hat{\imath} \times \hat{\jmath}= & \hat{\jmath} \times \hat{\imath}= \\
\hat{\jmath} \times \hat{k}= & \hat{k} \times \hat{\jmath}= \\
\hat{k} \times \hat{\imath}= & \hat{\imath} \times \hat{k}=
\end{array}
$$

3. Let $\vec{u}=\langle 3,2,-1\rangle$ and $\vec{v}=\langle 1,1,0\rangle$.
(a) Compute $\vec{u} \times \vec{v}$.
(b) Compute $\vec{v} \times \vec{u}$.
(c) Sketch $\vec{u}, \vec{v}, \vec{u} \times \vec{v}$ and $\vec{v} \times \vec{u}$.
4. Consider the points $A=(3,-1,2), B=(2,1,5)$, and $C=(1,-2,-2)$.
(a) Find the area of the parallelogram $A B C D$ with adjacent sides $\overrightarrow{A B}$ and $\overrightarrow{A C}$.
(b) Find the area of the triangle $A B C$.
(c) Find the distance from the point A to the line $B C$.
