PROPERTIES OF POWER SERIES HANDOUT

APRIL 5, 2019

Theorem (Properties of power series). Suppose that

$$\sum_{n=0}^{\infty} c_n x^n \text{ converges to } f(x) \text{ for all } x \text{ in an interval } I_1$$

and

$$\sum_{n=0}^{\infty} d_n x^n \text{ converges to } g(x) \text{ for all } x \text{ in an interval } I_2$$

Then:

(a) ∑[∞] (c_nxⁿ ± d_nxⁿ) converges to f(x) ± g(x) for x values in the overlap of I₁ and I₂.
(b) ∑[∞] bx^mc_nxⁿ converges to bx^mf(x) for x values in I₁ (where b is a fixed value and m ≥ 0).
(c) ∑[∞] c_n(bx^m)ⁿ converges to f(bx^m) as long as bx^m is in I₁ (where b is a fixed value and m ≥ 0).
(d) (∑[∞] c_nxⁿ) · (∑[∞] d_nxⁿ) converges to f(x) · g(x) for x in the overlap of I₁ and I₂. (Warning: we cannot multiply series by just multiplying the corresponding terms! We have to distribute.)
(e) f'(x) = ∑[∞] nc_nxⁿ⁻¹ for x values in I₁. (Take the derivative of each term.)
(f) ∫ f(x) dx = C + ∑[∞] c_n xⁿ⁺¹/n + 1 for x values in I₁. (Take the antiderivative of each

Parts (e) and (f) are called "term-by-term" differentiation and integration.

Note: Parts (a), (d), (e), and (f) still hold if the center of the power series is nonzero, just replace x with (x - a). For parts (a) and (d), both series must have the same center.

PROPERTIES OF POWER SERIES HANDOUT

Exercises:

1. (a) Use partial fractions to find a power series for $\frac{4}{(x-3)(x+1)}$.

(b) What is the interval of convergence of the series?

2. Find the first 3 terms (constant, x, x^2) of the series obtained by multiplying

$$\sum_{n=0}^{\infty} \frac{x^n}{\sqrt{n}} \quad \text{and} \quad \sum_{n=0}^{\infty} n 2^n x^n.$$

Hint: Write out the first few terms of each series and FOIL/distribute. You need at least 3 terms of each. (Why?)

PROPERTIES OF POWER SERIES HANDOUT

3. (a) Find a power series for $\ln(1+x)$ centered at 0. (*Hint*: $\frac{d}{dx}\ln(1+x) = \frac{1}{1+x}$.)

(b) Find a power series for $\ln(x)$ centered at 1.

4. (a) Find a power series for $\arctan(x)$ centered at 0.

(b) Show that the power series you found in the previous part converges at x = 1.

(c) Evaluate the series
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1}$$
.