Handout: Properties of power series

Theorem (Properties of power series). Suppose that

$$\sum_{n=0}^{\infty} c_n x^n \text{ converges to } f(x) \text{ for all } x \text{ in an interval } I_1$$

and

$$\sum_{n=0}^{\infty} d_n x^n$$
 converges to $g(x)$ for all x in an interval I_2 .

Then:

- (a) $\sum_{\substack{n=0\\\infty}}^{\infty} (c_n x^n \pm d_n x^n)$ converges to $f(x) \pm g(x)$ for x values in the overlap of I_1 and I_2 .
- (b) $\sum_{n=0}^{\infty} bx^m c_n x^n$ converges to $bx^m f(x)$ for x values in I_1 (where b is a fixed value and $m \ge 0$).
- (c) $\sum_{n=0}^{\infty} c_n (bx^m)^n$ converges to $f(bx^m)$ as long as bx^m is in I_1 (where b is a fixed value and $m \ge 0$).
- (d) $\left(\sum_{n=0}^{\infty} c_n x^n\right) \cdot \left(\sum_{n=0}^{\infty} d_n x^n\right)$ converges to $f(x) \cdot g(x)$ for x in the overlap of I_1 and I_2 . (Warning: we cannot multiply series by just multiplying the corresponding terms! We have to distribute.)

(e)
$$f'(x) = \sum_{n=1} nc_n x^{n-1}$$
 for x values in I_1 . (Take the derivative of each term.)

(f) $\int f(x) \, dx = C + \sum_{n=0}^{\infty} c_n \frac{x^{n+1}}{n+1}$ for x values in I_1 . (Take the antiderivative of each term.)

Parts (e) and (f) are called "term-by-term" differentiation and integration.

Note: Parts (a), (d), (e), and (f) still hold if the center of the power series is nonzero, just replace x with (x - a). For parts (a) and (d), both series must have the same center.

Exercises:

- (1) Write $\frac{2x^2}{1-x}$ as a power series. What is its interval of convergence?
- (2) Write $\frac{7}{1+3x}$ as a power series. What is its interval of convergence?
- (3) Add your results from parts (1) and (2). What is the resulting function? What is the interval of convergence?
- (4) Find the first 3 terms (constant, x, x^2) of the series obtained by multiplying

$$\sum_{n=0}^{\infty} \frac{x^n}{\sqrt{n}} \quad \text{and} \quad \sum_{n=0}^{\infty} n 2^n x^n.$$

Hint: Write out the first few terms of each series and FOIL/distribute. You need at least 3 terms of each. (Why?)

- (5) What is the interval of convergence of the resulting series in part (4)? Hint: Find the intervals of convergence of each series and use part (d) of the theorem.
- (6) Find a series representing the function $6 \ln(1-x)$. **Hint:** $\frac{d}{dx} (6 \ln(1-x)) = \frac{-6}{1-x}$. Apply part (f) of the theorem.
- (7) Find a series representing the function $\frac{x}{(1+2x^2)^2}$.

Hint: Take the antiderivative of the function, then apply part (e) of the theorem.