DIRECTIONAL DERIVATIVES AND THE GRADIENT HANDOUT

MAY 13, 2019

Theorem. Suppose that f(x, y) is differentiable and \vec{u} is a unit vector. Then $D_{\vec{u}}f(x, y) = \nabla f(x, y) \cdot \vec{u}$.

Exercise 1. Let $f(x,y) = x^2y^3 - 4y$ and $\vec{v} = \langle 2, 5 \rangle$. Find the directional derivative of *f* at the point (2, -1) in the direction of \vec{v} .

Exercise 2. Let $f(x,y) = x \sin(xy)$. Find the directional derivative of f at the point (2,0) in the direction of $\theta = \pi/3$ (as measured counterclockwise from the *x*-axis).

Exercise 3. Let $g(x, y) = x^2 + y^2 - 4x$.

- (a) What is the equation of the level curve passing through the point (1, 2)?
- (b) Find a tangent vector to this level curve.

Exercise 4. Let f(x, y, z) = xy + yz + zx. Compute the tangent plane to the level surface f(x, y, z) = 3 at the point (1, 1, 1).

Exercise 5. The normal line of a surface at a point is the line that is perpendicular to the surface at that point. Compute the equations of the tangent plane and normal line at the point (-2, 1, -3) to the ellipsoid

$$\frac{x^2}{4} + y^2 + \frac{z^2}{9} = 3.$$