DIRECTIONAL DERIVATIVES AND THE GRADIENT HANDOUT

MAY 13, 2019

Theorem. Suppose that $f(x, y)$ is differentiable and \vec{u} is a unit vector. Then

$$
D_{\vec{u}} f(x, y)=\nabla f(x, y) \cdot \vec{u}
$$

Exercise 1. Let $f(x, y)=x^{2} y^{3}-4 y$ and $\vec{v}=\langle 2,5\rangle$. Find the directional derivative of f at the point $(2,-1)$ in the direction of \vec{v}.

Exercise 2. Let $f(x, y)=x \sin (x y)$. Find the directional derivative of f at the point $(2,0)$ in the direction of $\theta=\pi / 3$ (as measured counterclockwise from the x-axis).

Exercise 3. Let $g(x, y)=x^{2}+y^{2}-4 x$.
(a) What is the equation of the level curve passing through the point $(1,2)$?
(b) Find a tangent vector to this level curve.

Exercise 4. Let $f(x, y, z)=x y+y z+z x$. Compute the tangent plane to the level surface $f(x, y, z)=3$ at the point $(1,1,1)$.

Exercise 5. The normal line of a surface at a point is the line that is perpendicular to the surface at that point. Compute the equations of the tangent plane and normal line at the point $(-2,1,-3)$ to the ellipsoid

$$
\frac{x^{2}}{4}+y^{2}+\frac{z^{2}}{9}=3
$$

