CHAIN RULE HANDOUT

MAY 10, 2019

Theorem (Chain Rule, case 1). Suppose that x = x(t) and y = y(t) are differentiable functions of *t* and z = z(x, y) is a differentiable function of *x* and *y*. Then z(x(t), y(t)) is a differentiable function of *t* and

$$\frac{dz}{dt} = \frac{\partial z}{\partial x}\frac{dx}{dt} + \frac{\partial z}{\partial y}\frac{dy}{dt}$$

where $\frac{dz}{dt}$, $\frac{dx}{dt}$, and $\frac{dy}{dt}$ are evaluated at *t* and $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ are evaluated at (x, y).

Theorem (Chain Rule, case 2). Suppose that x = x(u, v) and y = y(u, v) are differentiable functions of u and v, and z = z(x, y) is a differentiable function of x and y. Then z(x(u, v), y(u, v)) is a differentiable function of u and v and

$$\frac{\partial z}{\partial u} = \frac{\partial z}{\partial x}\frac{\partial x}{\partial u} + \frac{\partial z}{\partial y}\frac{\partial y}{\partial u}$$
$$\frac{\partial z}{\partial v} = \frac{\partial z}{\partial x}\frac{\partial x}{\partial v} + \frac{\partial z}{\partial y}\frac{\partial y}{\partial v}$$

where each partial derivative is evaluated at the appropriate point (u, v) or (x, y).

Theorem (Chain Rule, general case). Let $w = w(x_1, ..., x_m)$ be a differentiable function of *m* variables, and for each i = 1, ..., m, let $x_i = x_i(t_1, ..., t_n)$ be a differentiable function of *n* variables. Then

$$\frac{\partial w}{\partial t_j} = \frac{\partial w}{\partial x_1} \frac{\partial x_1}{\partial t_j} + \frac{\partial w}{\partial x_2} \frac{\partial x_2}{\partial t_j} + \dots + \frac{\partial w}{\partial x_m} \frac{\partial x_m}{\partial t_j}$$

for each $j = 1, \ldots, n$.

Exercise 1. (a) Let $z = \sin(\theta) \cos(\varphi)$, $x = st^2$, $y = s^2t$. Compute $\frac{\partial z}{\partial s}$.

(b) Let $w = xe^{y/z}$, $x = t^2$, y = 1 - t and z = 1 + 2t. Compute dw/dt.

(c) Let
$$u = x^2 + yz$$
, $x = st \cos(\theta)$, $y = st \sin(\theta)$, and $z = s + t$. Find $\frac{\partial u}{\partial s}$, $\frac{\partial u}{\partial t}$, and $\frac{\partial u}{\partial \theta}$ when $s = 2, t = 3$, and $\theta = 0$.

Exercise 2. Let *C* be the curve defined by sin(x) + cos(y) = sin(x) cos(y). Use partial derivatives to find dy/dx.