CHAIN RULE HANDOUT

MAY 10, 2019

Theorem (Chain Rule, case 1). Suppose that $x=x(t)$ and $y=y(t)$ are differentiable functions of t and $z=z(x, y)$ is a differentiable function of x and y. Then $z(x(t), y(t))$ is a differentiable function of t and

$$
\frac{d z}{d t}=\frac{\partial z}{\partial x} \frac{d x}{d t}+\frac{\partial z}{\partial y} \frac{d y}{d t}
$$

where $\frac{d z}{d t}, \frac{d x}{d t}$, and $\frac{d y}{d t}$ are evaluated at t and $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ are evaluated at (x, y).

Theorem (Chain Rule, case 2). Suppose that $x=x(u, v)$ and $y=y(u, v)$ are differentiable functions of u and v, and $z=z(x, y)$ is a differentiable function of x and y. Then $z(x(u, v), y(u, v))$ is a differentiable function of u and v and

$$
\begin{aligned}
& \frac{\partial z}{\partial u}=\frac{\partial z}{\partial x} \frac{\partial x}{\partial u}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial u} \\
& \frac{\partial z}{\partial v}=\frac{\partial z}{\partial x} \frac{\partial x}{\partial v}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial v}
\end{aligned}
$$

where each partial derivative is evaluated at the appropriate point (u, v) or (x, y).

Theorem (Chain Rule, general case). Let $w=w\left(x_{1}, \ldots, x_{m}\right)$ be a differentiable function of m variables, and for each $i=1, \ldots, m$, let $x_{i}=x_{i}\left(t_{1}, \ldots, t_{n}\right)$ be a differentiable function of n variables. Then

$$
\frac{\partial w}{\partial t_{j}}=\frac{\partial w}{\partial x_{1}} \frac{\partial x_{1}}{\partial t_{j}}+\frac{\partial w}{\partial x_{2}} \frac{\partial x_{2}}{\partial t_{j}}+\cdots+\frac{\partial w}{\partial x_{m}} \frac{\partial x_{m}}{\partial t_{j}}
$$

for each $j=1, \ldots, n$.

Exercise 1.

(a) Let $z=\sin (\theta) \cos (\varphi), x=s t^{2}, y=s^{2} t$. Compute $\frac{\partial z}{\partial s}$.
(b) Let $w=x e^{y / z}, x=t^{2}, y=1-t$ and $z=1+2 t$. Compute $d w / d t$.
(c) Let $u=x^{2}+y z, x=s t \cos (\theta), y=s t \sin (\theta)$, and $z=s+t$. Find $\frac{\partial u}{\partial s}, \frac{\partial u}{\partial t}$, and $\frac{\partial u}{\partial \theta}$ when $s=2, t=3$, and $\theta=0$.

Exercise 2. Let C be the curve defined by $\sin (x)+\cos (y)=\sin (x) \cos (y)$. Use partial derivatives to find $d y / d x$.

