LIMITS AND CONTINUITY HANDOUT

MAY 3, 2019

Theorem (Limit laws). Let f(x, y) and g(x, y) be defined in a neighborhood around (a, b) and let *c* be a constant. Assume that $\lim_{(x,y)\to(a,b)} f(x,y) = L$ and $\lim_{(x,y)\to(a,b)} g(x,y) = M$.

Then

(constant law)	$\lim_{(x,y)\to(a,b)}c=c$	(i)
	$\lim_{(x,y)\to(a,b)} x = a \text{ and } \lim_{(x,y)\to(a,b)} y = b$	(ii)
(sum and difference laws)	$\lim_{(x,y)\to(a,b)} (f(x,y)\pm g(x,y)) = L\pm M$	(iii)
(product law)	$\lim_{(x,y)\to(a,b)}f(x,y)g(x,y)=LM$	(iv)
(quotient law)	$\lim_{(x,y)\to(a,b)}\frac{f(x,y)}{g(x,y)}=\frac{L}{M}, \text{ provided } M\neq 0$	(v)
dd and positive, and for $L \ge 0$ if <i>n</i> is even	$\lim_{(x,y)\to(a,b)} \sqrt[n]{f(x,y)} = \sqrt[n]{L} \text{ for all } L \text{ if } n \text{ is of}$	(vi)
(root law)	and positive	

Exercise 1. For each of the below, either find the limit if it exists, or show that it does not exist. 23

(a)
$$\lim_{(x,y)\to(0,0)} \frac{6x^3y}{2x^4+y^4}$$

(b)
$$\lim_{(x,y)\to(2,1)} \frac{x-y-1}{\sqrt{x-y}-1}$$

(c)
$$\lim_{(x,y)\to(0,0)} \frac{x^3 - y^3}{x - y}$$

over 🖔

Exercise 2. Let $f(x,y) = x^2 - 4y$. (a) Compute $\lim_{h \to 0} \frac{f(x+h,y) - f(x,y)}{h}$.

(b) Compute
$$\lim_{h\to 0} \frac{f(x, y+h) - f(x, y)}{h}$$
.