LIMITS AND CONTINUITY HANDOUT

MAY 3, 2019

Theorem (Limit laws). Let $f(x, y)$ and $g(x, y)$ be defined in a neighborhood around (a, b) and let c be a constant. Assume that $\lim _{(x, y) \rightarrow(a, b)} f(x, y)=L$ and $\lim _{(x, y) \rightarrow(a, b)} g(x, y)=M$.
Then
(i) $\lim _{(x, y) \rightarrow(a, b)} c=c$
(constant law)
(ii) $\lim _{(x, y) \rightarrow(a, b)} x=a$ and $\lim _{(x, y) \rightarrow(a, b)} y=b$
(iii) $\lim _{(x, y) \rightarrow(a, b)}(f(x, y) \pm g(x, y))=L \pm M$
(sum and difference laws)
(iv) $\lim _{(x, y) \rightarrow(a, b)} f(x, y) g(x, y)=L M \quad$ (product law)
(v) $\lim _{(x, y) \rightarrow(a, b)} \frac{f(x, y)}{g(x, y)}=\frac{L}{M}$, provided $M \neq 0 \quad$ (quotient law)
(vi) $\lim _{(x, y) \rightarrow(a, b)} \sqrt[n]{f(x, y)}=\sqrt[n]{L}$ for all L if n is odd and positive, and for $L \geq 0$ if n is even
and positive
(root law)

Exercise 1. For each of the below, either find the limit if it exists, or show that it does not exist.
(a) $\lim _{(x, y) \rightarrow(0,0)} \frac{6 x^{3} y}{2 x^{4}+y^{4}}$
(b) $\lim _{(x, y) \rightarrow(2,1)} \frac{x-y-1}{\sqrt{x-y}-1}$
(c) $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{3}-y^{3}}{x-y}$

Exercise 2. Let $f(x, y)=x^{2}-4 y$.
(a) Compute $\lim _{h \rightarrow 0} \frac{f(x+h, y)-f(x, y)}{h}$.
(b) Compute $\lim _{h \rightarrow 0} \frac{f(x, y+h)-f(x, y)}{h}$.

