CALCULUS OF VECTOR-VALUED FUNCTIONS HANDOUT

APRIL 29, 2019

Theorem (Differentiating Vector-Valued Functions). Let *f*, *g*, and *h* be differentiable functions of *t*.

(i) If $\vec{r}(t) = \langle f(t), g(t) \rangle$, then $\vec{r}'(t) = \langle f'(t), g'(t) \rangle$. (ii) If $\vec{r}(t) = \langle f(t), g(t), h(t) \rangle$, then $\vec{r}'(t) = \langle f'(t), g'(t), h'(t) \rangle$.

Theorem (Properties Of Differentiation Of Vector-Valued Functions). Let \vec{r} and \vec{u} be differentiable vector-valued functions, let f be a differentiable real-valued function, and let c be a scalar.

(i)
$$\frac{d}{dt} c\vec{r}(t) = c\vec{r}'(t)$$
 (scalar multiplication)
(ii) $\frac{d}{dt} [\vec{r}(t) \pm \vec{u}(t)] = \vec{r}'(t) + \vec{u}'(t)$ (sum and difference)
(iii) $\frac{d}{dt} [f(t)\vec{r}(t)] = f'(t)\vec{r}(t) + f(t)\vec{r}'(t)$ (rescaling)
(iv) $\frac{d}{dt} [\vec{r}(t) \cdot \vec{u}(t)] = \vec{r}'(t) \cdot \vec{u}(t) + \vec{r}(t) \cdot \vec{u}'(t)$ (dot product)
(v) $\frac{d}{dt} [\vec{r}(t) \times \vec{u}(t)] = \vec{r}'(t) \times \vec{u}(t) + \vec{r}(t) \times \vec{u}'(t)$ (cross product)
(vi) $\frac{d}{dt} \vec{r}(f(t)) = \vec{r}'(f(t)) f'(t)$ (chain rule)
(vii) If $\vec{r}(t) \cdot \vec{r}(t) = c$, then $\vec{r}(t) \cdot \vec{r}'(t) = 0$.

Definition 1. Unit tangent vector at *t*:

$$\vec{T}(t) = \frac{\vec{r}'(t)}{\|\vec{r}'(t)\|}$$

provided $\vec{r}'(t) \neq \vec{0}$.

Definition 2 (Integrating Vector-Valued Functions). Let *f*, *g*, and *h* be real-valued functions on the closed interval [a, b] and let $\vec{r}(t) = \langle f(t), g(t), h(t) \rangle$.

(a) The *indefinite integral of* \vec{r} is

$$\int \vec{r}(t) dt = \int \langle f(t), g(t), h(t) \rangle dt$$
$$= \left\langle \int f(t) dt, \int g(t) dt, \int h(t) dt \right\rangle.$$

(b) The *definite integral of* \vec{r} is

$$\int_{a}^{b} \vec{r}(t) dt = \int_{a}^{b} \langle f(t), g(t), h(t) \rangle dt$$
$$= \left\langle \int_{a}^{b} f(t) dt, \int_{a}^{b} g(t) dt, \int_{a}^{b} h(t) dt \right\rangle$$

The definition of the integral of a vector-valued function into 2-space is analogous.

Exercise 1. Suppose a particle is traveling along a curve represented by a vector-valued function. Show that if the speed of the particle is constant, then the velocity function is always perpendicular to the acceleration function.