CALCULUS OF VECTOR-VALUED FUNCTIONS HANDOUT

APRIL 29, 2019

Theorem (Differentiating Vector-Valued Functions). Let f, g, and h be differentiable functions of t.
(i) If $\vec{r}(t)=\langle f(t), g(t)\rangle$, then $\vec{r}^{\prime}(t)=\left\langle f^{\prime}(t), g^{\prime}(t)\right\rangle$.
(ii) If $\vec{r}(t)=\langle f(t), g(t), h(t)\rangle$, then $\vec{r}^{\prime}(t)=\left\langle f^{\prime}(t), g^{\prime}(t), h^{\prime}(t)\right\rangle$.

Theorem (Properties Of Differentiation Of Vector-Valued Functions). Let \vec{r} and \vec{u} be differentiable vector-valued functions, let f be a differentiable real-valued function, and let c be a scalar.
(i) $\frac{d}{d t} c \vec{r}(t)=c \vec{r}^{\prime}(t)$ (scalar multiplication)
(ii) $\frac{d}{d t}[\vec{r}(t) \pm \vec{u}(t)]=\vec{r}^{\prime}(t)+\vec{u}^{\prime}(t)$ (sum and difference)
(iii) $\frac{d}{d t}[f(t) \vec{r}(t)]=f^{\prime}(t) \vec{r}(t)+f(t) \vec{r}^{\prime}(t)$ (rescaling)
(iv) $\frac{d}{d t}[\vec{r}(t) \cdot \vec{u}(t)]=\vec{r}^{\prime}(t) \cdot \vec{u}(t)+\vec{r}(t) \cdot \vec{u}^{\prime}(t)$ (dot product)
(v) $\frac{d}{d t}[\vec{r}(t) \times \vec{u}(t)]=\vec{r}^{\prime}(t) \times \vec{u}(t)+\vec{r}(t) \times \vec{u}^{\prime}(t)$
(cross product)
(vi) $\frac{d}{d t} \vec{r}(f(t))=\vec{r}^{\prime}(f(t)) f^{\prime}(t)$
(chain rule)
(vii) If $\vec{r}(t) \cdot \vec{r}(t)=c$, then $\vec{r}(t) \cdot \vec{r}^{\prime}(t)=0$.

Definition 1. Unit tangent vector at t :

$$
\vec{T}(t)=\frac{\vec{r}^{\prime}(t)}{\left\|\vec{r}^{\prime}(t)\right\|}
$$

provided $\vec{r}^{\prime}(t) \neq \overrightarrow{0}$.

Definition 2 (Integrating Vector-Valued Functions). Let f, g, and h be real-valued functions on the closed interval $[a, b]$ and let $\vec{r}(t)=\langle f(t), g(t), h(t)\rangle$.
(a) The indefinite integral of \vec{r} is

$$
\begin{aligned}
\int \vec{r}(t) d t & =\int\langle f(t), g(t), h(t)\rangle d t \\
& =\left\langle\int f(t) d t, \int g(t) d t, \int h(t) d t\right\rangle
\end{aligned}
$$

(b) The definite integral of \vec{r} is

$$
\begin{aligned}
\int_{a}^{b} \vec{r}(t) d t & =\int_{a}^{b}\langle f(t), g(t), h(t)\rangle d t \\
& =\left\langle\int_{a}^{b} f(t) d t, \int_{a}^{b} g(t) d t, \int_{a}^{b} h(t) d t\right\rangle
\end{aligned}
$$

The definition of the integral of a vector-valued function into 2-space is analogous.

Exercise 1. Suppose a particle is traveling along a curve represented by a vector-valued function. Show that if the speed of the particle is constant, then the velocity function is always perpendicular to the acceleration function.

