Math 8: Calculus in one and several variables Spring 2018 - Homework 5

Return date: Wednesday 05/02/18
keywords: lines, planes, space curves
Instructions: Write your answers neatly and clearly on straight-edged paper, use complete sentences and label any diagrams. Please show your work; no credit is given for solutions without work or justification.
exercise 1. (3 points) Find the parametric equation for the following lines
a) The line L_{1} that passes through the points $P=(3,0,1)$ and $Q=(5,1,2)$.
b) The line of intersection L of the planes $E_{1}: 2 x-y+3 z=0$ and $E_{2}: x+y+2 z=2$.

Show your work.
exercise 2. (3 points) Find an equation of the plane that passes through the points $P=(1,0,5)$ and $Q=(3,1,1)$ and is perpendicular to the plane $E_{1}: 2 x+y+3 z=6$.
Show your work.
exercise 3. (2 points) Find an equation for the plane consisting of all points that are equidistant for the points $P=(5,1,5)$ and $Q=(2,6,3)$. Explain how you have obtained your result.
exercise 4. (4 points)
a) Find the domain of the curve $\mathbf{r}(t)=\left\langle\ln \left(\frac{7-6}{-2}\right), \frac{t^{2}}{2 t^{2}-25}, \sqrt{9-t^{2}}\right\rangle$.
b) Evaluate the limit $\lim _{t \rightarrow 1^{-}}\left\langle\frac{\cos (3(t-1))-1}{2 t^{2}}, \frac{t-1}{t^{2}-1}, \frac{\sqrt{1-t^{4}}}{t-1}\right\rangle$.

Show your work.
exercise 5. (4 points) Sketch the curves with the given vector equation. Indicate with an arrow the direction in which t increases.
a) $\mathbf{r}(t)=\langle\sin (t), t\rangle$ in \mathbb{R}^{2}.
c) $\mathbf{r}(t)=\langle\cos (\pi \cdot t), t, \sin (\pi \cdot t)\rangle$ in \mathbb{R}^{3}.
exercise 6. (4 points) Give parametric equations for the following curves:
a) the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{25}=1$ in \mathbb{R}^{2}.
b) the curve of intersection of the surfaces

$$
y=x^{2} \text { and } x^{2}+z^{2}=4
$$

