Math 8: Calculus in one and several variables Spring 2018 - Homework 3

Return date: Wednesday 04/18/18
keywords: limits and integrals with Taylor series, vectors, dot product
Instructions: Write your answers neatly and clearly on straight-edged paper, use complete sentences and label any diagrams. Please show your work; no credit is given for solutions without work or justification.
exercise 1. (4 points) Use Taylor series to evaluate the limit
a) $\lim _{x \rightarrow 0} \frac{\sin (x)-x-\frac{x^{3}}{6}}{2 x^{5}}$.
b) $\lim _{x \rightarrow 2} \frac{\cos (x-2)-1+\frac{(x-2)^{2}}{2}}{(x-2)^{4}}$.
exercise 2. (3 points) Use Taylor series to evaluate $\int e^{-2 x} d x$ as an infinite series.
exercise 3. (8 points) Describe in words the regions of \mathbb{R}^{3} represented by the following equation(s) or inequalities. Make a simple sketch to clarify your answer.
a) $z \geq-2$.
b) $x^{2}=4$.
c) $y=z$.
d) $x^{2}+y^{2}=4$ and $z=2$.
exercise 4. (2 points) For the following vectors \mathbf{u} and \mathbf{v} calculate

$$
\mathbf{u}+\mathbf{v}, 2 \mathbf{u}+3 \mathbf{v},|\mathbf{u}| \text { and }|\mathbf{u}-\mathbf{v}|
$$

a) $\mathbf{u}=\langle 2,3\rangle$ and $\mathbf{v}=\langle-2,-1\rangle$.
b) $\mathbf{u}=\langle 6,1,-3\rangle$ and $\mathbf{v}=\langle 2,-2,1\rangle$.
exercise 5. (3 points) Let $\alpha=\angle(\mathbf{u}, \mathbf{v})$ be the angle between the vectors \mathbf{u} and \mathbf{v}. For the following vectors calculate

$$
|\mathbf{u}|,|\mathbf{v}|, \frac{\mathbf{u}}{|\mathbf{u}|}, \alpha=\angle(\mathbf{u}, \mathbf{v}) \text { and } \operatorname{proj}_{\mathbf{u}}(\mathbf{v})
$$

a) $\mathbf{u}=\langle 1,4\rangle$ and $\mathbf{v}=\langle 2,3\rangle$.
b) $\mathbf{u}=\langle-1,4,8\rangle$ and $\mathbf{v}=\langle 12,1,2\rangle$.
c) For the vectors in $5 \mathbf{a}$) draw a picture of \mathbf{u} and \mathbf{v} and the projection $\operatorname{proj}_{\mathbf{u}}(\mathbf{v})$.

