Math 8: Calculus in one and several variables Spring 2018-Homework 1

Return date: Wednesday 04/04/18
keywords: Taylor polynomials, remainder estimate, infinite series
Instructions: Write your answers neatly and clearly on straight-edged paper, use complete sentences and label any diagrams. Please show your work; no credit is given for solutions without work or justification.
exercise 1. (3 points) Find the Taylor polynomial $T_{3}(x)$, for the function $f(x)$ at a.
a) $f(x)=x+x^{3}$ at $a=1$.
b) $f(x)=e^{2 x^{2}+3}$ at $a=1$.
exercise 2. (4 points) For each of the following problems, write out enough terms of the 100th Taylor polynomial $T_{100}(x)$, for the function $f(x)$ at the point a, to make the pattern obvious. Use whatever notation is most clear. For example, the pattern in the sequence

$$
2,6,12,20,30, \ldots
$$

becomes much easier to see if you write it as

$$
1 \cdot 2,2 \cdot 3,3 \cdot 4,4 \cdot 5,5 \cdot 6, \ldots
$$

a) $f(x)=2 e^{4 x}$ at $a=0$.
b) $f(x)=3 \ln (x+1)$ at $a=0$.

Explain how you have obtained your answer.
exercise 3. (3 points)
a) Find the Taylor polynomial $T_{3}(x)$, for the function

$$
f(x)=x \cdot \ln (3 x+1) \text { at the point } a=1 .
$$

b) For the values $0.6 \leq x \leq 1.4$ estimate the accuracy of the approximation using the remainder estimate

$$
\left|R_{3}(x)\right|=\left|f(x)-T_{3}(x)\right|
$$

in Taylor's inequality (Theorem 11.10.9 of the book). Justify your answer.
exercise 4. (3 points) Suppose we use the following estimate for $3 \cos (x)$:

$$
3 \cos (x) \simeq 3-\frac{3}{2} x^{2} .
$$

Explain why it's okay to estimate the error using either $R_{2}(x)$ or $R_{3}(x)$. (Note that we get a better estimate using $R_{3}(x)$.)

Math 8: Calculus in one and several variables
 Spring 2018-Homework 1

Return date: Wednesday 04/04/18
exercise 5. (3 points) Determine whether the geometric series is convergent or divergent. If it is convergent, find its sum:
a) $\sum_{n=0}^{\infty} \frac{5}{(3 \pi)^{n}}$.
b) $\sum_{n=0}^{\infty} \frac{7^{n+1}}{6^{n}}$.
exercise 6. (4 points) Find the values of x for which the series converges. Find the sum of the series for those values of x.
a) $\sum_{n=1}^{\infty}(x+7)^{n}$.
b) $\sum_{n=0}^{\infty} \frac{5^{n}}{x^{n}}$.

