
ERROR ESTIMATES IN TAYLOR APPROXIMATIONS

Suppose we approximate a function f(x) near x = a by its Taylor polyno-
mial Tn(x). How accurate is the approximation? In other words, how big
is the error f(x) − Tn(x)? This error is often called the remainder Rn(x)
since it’s what’s left if we replace f(x) by Tn(x).

Examples. Since T0(x) = f(a), we have R0(x) = f(x) − f(a). Since
T1(x) = f(a) + f ′(a)(x − a) is the tangent line to f at a, the remainder
R1(x) is the difference between f(x) and the tangent line approximation of
f .

An important point:
• You can almost never find the exact value of Rn(x). If you knew

the value exactly, then you would know the precise value of f(x)
(since it’s easy to compute Tn(x) exactly and since f(x) = Tn(x)+
Rn(x)). Generally you’re using the Taylor approximation because
it’s not possible to find the value exactly! So the best we can hope
to do is get an upper bound on the size |Rn(x)| of the error.

The following formula gives us a way of bounding the error Rn(x).

Lagrange’s formula. There is some number c between a and x such that

Rn(x) =
f (n+1)(c)

(n+ 1)!
(x− a)n+1.

(We don’t know what c is! We only know there is such a c.)
How do we use Lagrange’s formula to get a bound on |Rn(x)|?

If you can find a positive real number M such that |f (n+1)(c)| ≤ M for all
c between a and the point x of interest, then Lagrange’s formula tells you
that

(1) |Rn(x)| ≤
M

(n+ 1)!
|x− a|n+1.

Note. Frequently, it’s too hard to find the exact maximum of |f (n+1)(c)| on
the interval between a and x. Instead, you can look for a number M that you
know is at least as big as the maximum (so you overestimate the maximum).
For example, if fn+1(c) is sin(c) or cos(c), then you can safely use the
upper bound M = 1, even if the interval doesn’t include any points where
the value of sin or cos is actually equal to 1. Similarly, if |f (n+1)(c)| =

√
c

and the interval of interest is, say, [1,3], then the actual maximum is
√
3,

which is rather ugly, but you could use the upper bound M = 2 since that’s
bigger than the maximum. You just need to be careful not to underestimate
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the maximum. In this example, you couldn’t use M = 1, for example, since
that’s smaller than the actual maximum

√
3.

Example. Suppose we want to approximate the value of e, say to within
an error of at most 0.001. Since e = e1, we could use a suitable Taylor
polynomial for the function f(x) = ex to estimate e1. What should we
use for our basepoint? The one value we know exactly is f(0) = e0 = 1.
So we will use a Taylor polynomial Tn(x) for ex about a = 0. We can
then estimate e by computing Tn(1). What’s the smallest degree Taylor
polynomial we can use to get the guaranteed accuracy? (I.e., what is the
smallest n we can use?)

Letting f(x) = ex, we have f ′(x) = ex and, in fact, f (n)(x) = ex for all
n. So

f(0) = 1 = f ′(0) = f ′′(0) = f ′′′(0) = . . .

Thus, e.g.,

T3(x) = 1 + x+
x2

2
+

x3

3!
and, more generally,

Tn(x) = 1 + x+
x2

2
+

x3

3!
+ · · ·+ xn

n!
.

We are interested in the error Rn(1) in approximating e1 by Tn(1).
We use Equation (2). Here M is an upper bound for |f (n+1)(c)| = |ec|

for c between 0 and 1. Here’s some things we know:
• We know ec is positive, so |ec| = ec.
• ex is an increasing function, so it’s biggest value on the interval [0, 1]

occurs at the righthand endpoint 1.
• We don’t know the exact value of e = e1 (that’s what we’re trying

to approximate!), but we do know that e1 < 3. (You’ve probably
heard that it’s around 2.7.)

So the maximum of ec for c ∈ [0, 1] is e1, which is less than 3. So we are
safe using M = 3 in Equation (2). (We could also use, say, 2.8 since it’s
also bigger than any value of ec for c ∈ [0, 1], but 3 is reasonable and easy
to work with.)

Next since x = 1 and a = 0, we have |x − a|n+1 = 1, so Equation (2)
yields

|Rn(1)| ≤
3

(n+ 1)!
.

So we need to find the smallest n such that
3

(n+ 1)!
≤ 0.001 =

1

1000
.
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Let’s experiment a bit. If we, say, start with n = 5, we get
3

(5 + 1)!
=

3

6 · 5 · 4 · 3 · 2 · 1
=

1

6 · 5 · 4 · 2 · 1
=

1

240
.

That’s not quite good enough, so let’s try n = 6.
3

(6 + 1)!
=

3

7 · 6 · 5 · 4 · 3 · 2 · 1
=

1

7 · 6 · 5 · 4 · 2 · 1
=

1

1680
<

1

1000
.

So n = 6 works! This yields

e = e1 ∼ T6(1) = 1 + 1 +
1

2!
+

1

3!
+

1

4!
+

1

5!
+

1

6!
to within 0.001.

Often, one wants to to approximate a function on an interval about the
basepoint a, say on an interval |x− a| ≤ d. We can then use the formula in
the box above in the following way:

Taylor’s Inequality. If you can find a positive real number M such that
|f (n+1)(x)| ≤M for all x such that |x− a| ≤ d, then

(2) |Rn(x)| ≤
M

(n+ 1)!
|x− a|n+1

for all x in the interval |x− a| ≤ d.

Example. Suppose we use the first degree Taylor polynomial (i.e., the tan-
gent line approximation) about a = 9 to estimate f(x) =

√
x on the interval

[8.5, 9.5]. Show that the magnitude of the error is less than 0.01.
We need to show that |R1(x)| ≤ 0.01 when |x− 9| ≤ 0.5 (since [8.5,9.5]

is the interval |x − 9| ≤ 0.5.) We use Taylor’s inequality with n = 1. We
have f ′(x) = 1

2
x−1/2 and f ′′(x) = −1

4
x−3/2 = − 1

4x3/2 . We first need an
upper bound M for |f ′′(x)| = 1

4x3/2 on [8.5,9.5]. The largest value occurs
when the denominator is the smallest, so the actual maximum is 1

4(8.5)3/2
.

This is our best choice of M but is rather ugly. We’ll simplify things in a
bit.

By Taylor’s inequality, we have

|R1(x)| ≤
M

2!
|x− 9|2 ≤ M

2!
(0.5)2 =

M

8

when |x − 9| ≤ 0.5. So we just need to know whether M
8
≤ 0.01, i.e.,

whether M ≤ 0.08 = 8
100

= 2
25

. Well, asking whether 1
4(8.5)3/2

≤ 2
25

is the same as asking whether 4(8.5)3/2 ≥ 25
2

. This is true since (8.5)3/2 is
certainly bigger than 8, so 4(8.5)3/2 > 4(8) = 32 > 25

2
. So we have verified

that our error is well under 0.01.


