Worksheet

(1) Let $\mathbf{a}=-2 \mathbf{i}+3 \mathbf{j}$ and $\mathbf{b}=2 \mathbf{i}-3 \mathbf{j}$ and $\mathbf{c}=-5 \mathbf{j}$. Find the following:
(a) $2 \mathbf{a}-4 \mathbf{b}$ (b) $\mathbf{a} \cdot \mathbf{b}$ (c) $|\mathbf{a}| \mathbf{c} \cdot \mathbf{a}$

Solution:
(a) $2 \mathbf{a}-4 \mathbf{b}=<-12,18>$
(b) $\mathbf{a} \cdot \mathbf{b}=-2(2)-3(3)=-13$
(c) $|\mathbf{a}|=\sqrt{4+9}=\sqrt{13} \quad \mathbf{c} \cdot \mathbf{a}=-2(0)-15=-15|\mathbf{a}| \mathbf{c} \cdot \mathbf{a}=-15 \sqrt{13}$
(2) Show that the vectors $\langle 6,3\rangle$ and $\langle-1,2\rangle$ are perpendicular.

Solution:

$$
\cos \theta=\frac{<6,3>\cdot<-1,2\rangle}{|<6,3>||<-1,2>|}=\frac{-6+6}{\sqrt{(36+9)(5)}}=0
$$

The angle between the two vectors is $\frac{\pi}{2}$. Thus they are perpendicular.
(3) Find the scalar and vector projections of \mathbf{b} onto \mathbf{a} where $\mathbf{a}=<1,1,1\rangle$ and $\mathbf{b}=\langle 1,-1,1\rangle$. Solution:

$$
\begin{gathered}
\operatorname{comp}_{\mathbf{a}} \mathbf{b}=\frac{\mathbf{b} \cdot \mathbf{a}}{|\mathbf{a}|}=\frac{1-1+1}{\sqrt{3}}=\frac{1}{\sqrt{3}} \\
\left.\operatorname{proj}_{\mathbf{a}} \mathbf{b}=\frac{\mathbf{b} \cdot \mathbf{a}}{|\mathbf{a}|^{2}} \mathbf{a}=\frac{1}{3}<1,1,1\right\rangle \\
\left.\operatorname{orth}_{\mathbf{a}} \mathbf{b}=\mathbf{b}-\frac{\mathbf{b} \cdot \mathbf{a}}{|\mathbf{a}|^{2}} \mathbf{a}=<1,-1,1>-\frac{1}{3}<1,1,1\right\rangle=<2 / 3,-4 / 3,2 / 3>
\end{gathered}
$$

(4) Let $\mathbf{a}=-3 \mathbf{i}+2 \mathbf{j}-2 \mathbf{k}, \mathbf{b}=-\mathbf{i}+2 \mathbf{j}-4 \mathbf{k}$, and $\mathbf{c}=7 \mathbf{i}+3 \mathbf{j}-4 \mathbf{k}$

- $\mathbf{a} \times \mathbf{b}$ Solution:

$$
\left.\mathbf{a} \times \mathbf{b}=\left[\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
-3 & 2 & -2 \\
-1 & 2 & -4
\end{array}\right]=<-4,-10,-4\right\rangle
$$

- $\mathbf{a} \times(\mathbf{b}+\mathbf{c})$ Solution:
$\left.\mathbf{a} \times(\mathbf{b}+\mathbf{c})=\mathbf{a} \times\langle 6,5,-8\rangle=\left[\begin{array}{ccc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ -3 & 2 & -2 \\ 6 & 5 & -8\end{array}\right]=<-6,-36,-27\right\rangle$
- $\mathbf{a} \cdot(\mathbf{b}+\mathbf{c})$

Solution:

$$
\mathbf{a} \cdot(\mathbf{b}+\mathbf{c})=\mathbf{a} \cdot<6,5,-8\rangle=8
$$

(5) Let $P(-1,3,1), Q(0,5,2)$, and $R(4,3,-1)$. Find a nonzero vector orthogonal to the plane through the points P, Q, and R.
Solution: $\overrightarrow{P Q}=<1,2,1>$ and $\overrightarrow{P R}=<5,0,-2>$.

$$
\overrightarrow{P Q} \times \overrightarrow{P R}=\left[\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
1 & 2 & 1 \\
5 & 0 & -2
\end{array}\right]=-4 \mathbf{i}+7 \mathbf{j}-10 \mathbf{k}
$$

(6) Let $P(-1,3,1), Q(0,5,2)$, and $R(4,3,-1)$. Find the area of the triangle $P Q R$.

Solution: $\mathrm{A}(P Q R)=1 / 2|\overrightarrow{P Q} \times \overrightarrow{P R}|=1 / 2 \sqrt{16+49+100}=\frac{\sqrt{165}}{2}$.
(7) Use the scalar triple product to determine whether the points $A(1,3,2), B(3,-1,6)$, $C(5,2,0)$, and $D(3,6,-4)$ lie in the same plane.
Solution: $\overrightarrow{A B}=<2,-4,4>, \overrightarrow{A C}=<4,-1,-2>$, and $\overrightarrow{A D}=<2,3,-6>$. The volume is given by the triple product.

$$
\overrightarrow{A B} \cdot(\overrightarrow{A C} \times \overrightarrow{A D})=\left[\begin{array}{ccc}
2 & -4 & 4 \\
4 & -1 & -2 \\
2 & 3 & -6
\end{array}\right]=2(12)-4(20)+4(14)>0
$$

Thus the points are not coplanar.
(8) Find a parametric equation for the line through $(1,-2,3)$ and $(4,5,6)$.

Solution: $\mathbf{v}=<4-1,5+2,6-3>=<3,7,3>$. So the line is given by $x=1+3 t$, $y=-2+7 t$ and $z=3+3 t$.
(9) Let $3 x-2 y+z=1$ and $2 x+y-3 z=3$ be two planes. Find the parametric equation for the line of intersection of the planes. Also find the angle between the two planes.
Solution: First, we need to determine a point on the line of intersection. We choose to find the] point where both lines intersect the $x y$-plane. Setting $z=0$ and solving for x and y, we find the point $(1,1,0)$.

Next, we need to determine the direction. For the first plane, $\mathbf{n}_{1}=<3,-2,1>$. For the second plane, $\mathbf{n}_{2}=<2,1,-3>$. The direction is given by

$$
\mathbf{v}=\mathbf{n}_{1} \times \mathbf{n}_{2}=\left[\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
3 & -2 & 1 \\
2 & 1 & -3
\end{array}\right]=<5,11,7>
$$

Thus the line is given by

$$
(x, y, z)=(1+5 t, 1+11 t, 7 t)
$$

for $-\infty<t<\infty$.

To find the angle between the two planes, we know

$$
\cos \theta=\frac{\mathbf{n}_{1} \cdot \mathbf{n}_{2}}{\left|\mathbf{n}_{1}\right|\left|\mathbf{n}_{2}\right|}=\frac{1}{14}
$$

Solving for θ, we find the angle between the two planes to be $\arccos (1 / 14)$.
(10) Evaluate the limit.

$$
\lim _{t \rightarrow 2}\left(\frac{t^{2}-2 t}{t-2} \mathbf{i}+\sqrt{t+4} \mathbf{j}+\frac{\sin (\pi t)}{\ln (t-1)} \mathbf{k}\right)
$$

Solution:

$$
\lim _{t \rightarrow 2}\left(\frac{t^{2}-2 t}{t-2} \mathbf{i}+\sqrt{t+4} \mathbf{j}+\frac{\sin (\pi t)}{\ln (t-1)} \mathbf{k}\right)=2 \mathbf{i}+\sqrt{6} \mathbf{j}+\pi \mathbf{k}
$$

(11) Sketch the curve $\mathbf{r}(t)=<t^{2}, \sqrt{t}, 1>$. Use arrows to indicate the direction in which t increases.
Solution: A picture!
(12) Find the unit tangent vector $\mathbf{T}(t)$ of $\mathbf{r}(t)=<\cos (t),-\sin (t), \sin (2 t)>$ when $t=\pi / 2$. Solution:

$$
\begin{gathered}
\mathbf{r}^{\prime}(t)=<-\sin t,-\cos t, 2 \cos (2 t)> \\
\mathbf{r}^{\prime}(\pi / 2)=<-1,0,-2> \\
\left|\mathbf{r}^{\prime}(\pi / 2)\right|=\sqrt{5} \\
\mathbf{T}(\pi / 2)=\frac{1}{\sqrt{5}}<-1,0,-2>
\end{gathered}
$$

(13) Find the length of the curve

$$
\mathbf{r}(t)=\left\langle 2 t, t^{2}, \frac{1}{3} t^{3}\right\rangle
$$

for $0 \leq t \leq 1$.
Solution: We need to evaluate $L=\int_{0}^{1}\left|\mathbf{r}^{\prime}(t)\right| d t$. First,

$$
\mathbf{r}^{\prime}(t)=\left\langle 2,2 t, t^{2}\right\rangle .
$$

Hence,

$$
\left|\mathbf{r}^{\prime}(t)\right|=\sqrt{4+4 t^{2}+t^{4}}=\sqrt{\left(t^{2}+2\right)^{2}}=t^{2}+2
$$

Thus,

$$
L=\int_{0}^{1}\left|\mathbf{r}^{\prime}(t)\right| d t=\int_{0}^{1}\left(t^{2}+2\right) d t=\frac{t^{3}}{3}+\left.2 t\right|_{0} ^{1}=2 \frac{1}{3}
$$

(14) Find the length of the curve intersection of the cylinder $4 x^{2}+y^{2}=4$ and the plane $x+y+z=2$.
Solution: First, we need a parametric equation of the cylinder. To get this, we rewrite the equation of the cylinder as $x^{2}+\left(\frac{y}{2}\right)^{2}=1$. From this equation it is easy to see $x=\cos t$ and $y=2 \sin t$ for $0 \leq t \leq 2 \pi$. Plugging these values into the equation of the plane, we find $z=2-\cos t-2 \sin t$. Thus the curve is given by the vector function

$$
\mathbf{r}(t)=<\cos t, 2 \sin t, 2-\cos t-2 \sin t>
$$

Hence,

$$
\mathbf{r}^{\prime}(t)=<-\sin t, 2 \cos t, \sin t-2 \cos t>.
$$

We know the length of this curve is given by

$$
\begin{aligned}
L & =\int_{0}^{2 \pi}\left|\mathbf{r}^{\prime}(t)\right| d t \\
& =\int_{0}^{2 \pi} \sqrt{\sin ^{2} t+4 \cos ^{2} t+(\sin t-2 \cos t)^{2}} d t \\
& =\int_{0}^{2 \pi} \sqrt{2\left(\sin ^{2} t+4 \cos ^{2} t-2 \cos t \sin t\right)} d t \\
& =\int_{0}^{2 \pi} \sqrt{2(4-2 \cos t \sin t)} d t
\end{aligned}
$$

