Worksheet

(1) Let $\mathbf{a}=-2 \mathbf{i}+3 \mathbf{j}$ and $\mathbf{b}=2 \mathbf{i}-3 \mathbf{j}$ and $\mathbf{c}=-5 \mathbf{j}$. Find the following:
(a) $2 \mathbf{a}-4 \mathbf{b}$ (b) $\mathbf{a} \cdot \mathbf{b}$ (c) $|\mathbf{a}| \mathbf{c} \cdot \mathbf{a}$
(2) Show that the vectors $\langle 6,3\rangle$ and $\langle-1,2\rangle$ are perpendicular.
(3) Find the scalar and vector projections of \mathbf{b} onto \mathbf{a} where $\mathbf{a}=<1,1,1\rangle$ and $\mathbf{b}=\langle 1,-1,1\rangle$.
(4) Let $\mathbf{a}=-3 \mathbf{i}+2 \mathbf{j}-2 \mathbf{k}, \mathbf{b}=-\mathbf{i}+2 \mathbf{j}-4 \mathbf{k}$, and $\mathbf{c}=7 \mathbf{i}+3 \mathbf{j}-4 \mathbf{k}$

- $\mathbf{a} \times \mathbf{b}$
- $\mathbf{a} \times(\mathbf{b}+\mathbf{c})$
- $\mathbf{a} \cdot(\mathbf{b}+\mathbf{c})$
(5) Let $P(-1,3,1), Q(0,5,2)$, and $R(4,3,-1)$. Find a nonzero vector orthogonal to the plane through the points P, Q, and R.
(6) Let $P(-1,3,1), Q(0,5,2)$, and $R(4,3,-1)$. Find the area of the triangle $P Q R$.
(7) Use the scalar triple product to determine whether the points $A(1,3,2), B(3,-1,6)$, $C(5,2,0)$, and $D(3,6,-4)$ lie in the same plane.
(8) Find a parametric equation for the line through $(1,-2,3)$ and $(4,5,6)$.
(9) Let $3 x-2 y+z=1$ and $2 x+y-3 z=3$ be two planes. Find the parametric equation for the line of intersection of the planes. Also find the angle between the two planes.
(10) Evaluate the limit.

$$
\lim _{t \rightarrow 2}\left(\frac{t^{2}-2 t}{t-2} \mathbf{i}+\sqrt{t+4} \mathbf{j}+\frac{\sin (\pi t)}{\ln (t-1)} \mathbf{k}\right)
$$

(11) Sketch the curve $\mathbf{r}(t)=<t^{2}, \sqrt{t}, 1>$. Use arrows to indicate the direction in which t increases.
(12) Find the unit tangent vector $\mathbf{T}(t)$ of $\mathbf{r}(t)=<\cos (t),-\sin (t), \sin (2 t)>$ when $t=\pi / 2$.
(13) Find the length of the curve

$$
\mathbf{r}(t)=\left\langle 2 t, t^{2}, \frac{1}{3} t^{3}\right\rangle
$$

for $0 \leq t \leq 1$.
(14) Find the length of the curve intersection of the cylinder $4 x^{2}+y^{2}=4$ and the plane $x+y+z=2$.

