Worksheet

(1) Let $\mathbf{a} = -2\mathbf{i} + 3\mathbf{j}$ and $\mathbf{b} = 2\mathbf{i} - 3\mathbf{j}$ and $\mathbf{c} = -5\mathbf{j}$. Find the following: (a) $2\mathbf{a} - 4\mathbf{b}$ (b) $\mathbf{a} \cdot \mathbf{b}$ (c) $|\mathbf{a}|\mathbf{c} \cdot \mathbf{a}$

(2) Show that the vectors < 6, 3 > and < -1, 2 > are perpendicular.

(3) Find the scalar and vector projections of **b** onto **a** where $\mathbf{a} = <1, 1, 1 >$ and $\mathbf{b} = <1, -1, 1 >$.

(4) Let $\mathbf{a} = -3\mathbf{i} + 2\mathbf{j} - 2\mathbf{k}$, $\mathbf{b} = -\mathbf{i} + 2\mathbf{j} - 4\mathbf{k}$, and $\mathbf{c} = 7\mathbf{i} + 3\mathbf{j} - 4\mathbf{k}$ • $\mathbf{a} \times \mathbf{b}$

• $\mathbf{a} \times (\mathbf{b} + \mathbf{c})$

• $\mathbf{a} \cdot (\mathbf{b} + \mathbf{c})$

(5) Let P(-1,3,1), Q(0,5,2), and R(4,3,-1). Find a nonzero vector orthogonal to the plane through the points P, Q, and R.

(6) Let P(-1,3,1), Q(0,5,2), and R(4,3,-1). Find the area of the triangle PQR.

(7) Use the scalar triple product to determine whether the points A(1,3,2), B(3,-1,6), C(5,2,0), and D(3,6,-4) lie in the same plane.

(8) Find a parametric equation for the line through (1, -2, 3) and (4, 5, 6).

(9) Let 3x - 2y + z = 1 and 2x + y - 3z = 3 be two planes. Find the parametric equation for the line of intersection of the planes. Also find the angle between the two planes.

(10) Evaluate the limit.

$$\lim_{t \to 2} \left(\frac{t^2 - 2t}{t - 2} \mathbf{i} + \sqrt{t + 4} \mathbf{j} + \frac{\sin(\pi t)}{\ln(t - 1)} \mathbf{k} \right)$$

(11) Sketch the curve $\mathbf{r}(t) = \langle t^2, \sqrt{t}, 1 \rangle$. Use arrows to indicate the direction in which t increases.

(12) Find the unit tangent vector $\mathbf{T}(t)$ of $\mathbf{r}(t) = \langle \cos(t), -\sin(t), \sin(2t) \rangle$ when $t = \pi/2$.

(13) Find the length of the curve

$$\mathbf{r}(t) = \left\langle 2t, t^2, \frac{1}{3}t^3 \right\rangle$$

for $0 \le t \le 1$.

(14) Find the length of the curve intersection of the cylinder $4x^2 + y^2 = 4$ and the plane x + y + z = 2.