Math 8
Minima and Maxima on Surfaces

Practice Problems

1) Find the local minima, maxima, and saddle points for the following functions:
a) $f(x, y)=y^{3}+3 x^{2} y-6 x^{2}-6 y^{2}+2$.
b) $f(x, y)=\sin x \sin y$, where $-\pi \leq x \leq \pi$ and $-\pi \leq y \leq \pi$.
c) $f(x, y)=e^{x} \cos y$.
2) Find the rectangular box with the largest volume such that it lies in the first octant, three of its faces touch the 3 coordinate planes, and one of its vertices lies on the plane: $x+2 y+3 z=6$.
3) Find the points on the surface $z^{2}=x^{2}+y^{2}$ that are closest to the point $(4,2,0)$. (Hint: Consider the distance squared.)
4) A box is designed so that its surface area is exactly $10 \mathrm{~cm}^{2}$. What dimensions would maximize the boxes volume?
5) Consider the plane $x-2 y+3 z=6$:
a) Find the point A on the plane that is closest to the point $B=(0,1,0)$. (Note: We had a problem like this on HW \#4. In this problem use derivatives to find this point A.)
b) What is the normal vector to our plane?
c) How is the vector $\overrightarrow{A B}$ related to the normal vector?
6) Find the absolute maximum and minimum values of the function

$$
f(x, y)=4 x+6 y-x^{2}-y^{2}
$$

where $0 \leq x \leq 4$ and $0 \leq y \leq 5$.
7) Find the absolute maximum and minimum values that the function $f(x, y)=x e^{-x^{2}-y^{2}}$ takes when $x^{2}+y^{2} \leq 4$.

