Math 8
Homework Set \#9
Taylor Series

Practice Problems

1) The following are Taylor series (at zero) of two common functions. For each, find their intervals of convergence.
a) $\cos x=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{(2 n)!}$
b) $\arctan x=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{2 n+1}$

Find the interval of convergence for the following Taylor series:
2) $\sum_{n=0}^{\infty} \frac{x^{n}}{3^{n} \ln n}$
3) $\sum_{n=0}^{\infty} n!x^{n}$
4) $\sum_{n=0}^{\infty} \frac{(x-3)^{n}}{n^{2}+1}$
4) Find the Taylor series centered at $a=8$ of the function $\ln x$. What is its interval of convergence?
5) Find the sum of the series

$$
1-\ln 2+\frac{(\ln 2)^{2}}{2!}-\frac{(\ln 2)^{3}}{3!}+\frac{(\ln 2)^{4}}{4!}-\frac{(\ln 2)^{5}}{5!}+\cdots
$$

Hint: What is the Taylor series for e^{x} ?
6) Using the Taylor series to determine the following limits:
a) $\lim _{x \rightarrow 0} \frac{\cos x-1}{x}$
b) $\lim _{x \rightarrow 0} \frac{\arctan x-x}{x^{3}}$

Note: The Taylor series for $\cos x$ and $\arctan x$ are given in problem 1.
7) Use Taylor series to approximate the following integral to within $1 / 1000$ of its exact value:

$$
\int_{0}^{1} \cos \left(x^{2}\right) d x
$$

Problems to Turn In

1) Suppose that $\lim _{n \rightarrow \infty} \sqrt[n]{c_{n}}=\frac{1}{R}$ so that the radius of convergence of the Taylor series $\sum_{n=1}^{\infty} c_{n} x^{n}$
is R. Find the radius of convergence of the Taylor series $\sum_{n=1}^{\infty} c_{n} x^{2 n}$.
