Math 8
Homework Set \#8
Construction of Taylor Series

Practice Problems

Use differentiation to find the Taylor series representation at 0 of the following functions:

1) $f(x)=\ln (1-x)$
2) $f(x)=\cos x$
3) Use your answer from Problem 2 to find the Taylor series representation at 0 of

$$
f(x)=\cos (\sqrt{x})
$$

In class we showed that

$$
\begin{equation*}
\frac{1}{1-x}=1+x+x^{2}+\cdots \tag{1}
\end{equation*}
$$

which we will call equation (1). We then used this fact to find the Taylor series for $f(x)=$ $\ln (1-x)$. In fact, we can actually use equation (1) to show a lot more as we will demonstrate through the next couple of problems.

Use equation (1) to find the Taylor series representation at 0 of the following functions
4) $f(x)=\frac{1}{1+2 x^{3}}$
5) $f(x)=\frac{1}{3+x}$
6) This problem will take you through the steps needed to find the Taylor series representation at 0 of $f(x)=\arctan (x)$.
a. Use equation (1) to find the Taylor series representation at 0 of $\frac{1}{1+x^{2}}$.
b. Use part a) and the fact that

$$
\arctan x=\int \frac{1}{1+x^{2}} d x
$$

to find the Taylor series representation at 0 of $\arctan x$.

Problems to Turn In

1) Use differentiation to find the Taylor series representation at 0 of

$$
f(x)=\sqrt{x+1}
$$

2)

a. Using equation (1) and the fact that

$$
\frac{d}{d x}\left(\frac{1}{1+x}\right)=-\frac{1}{(1+x)^{2}}
$$

to find the Taylor series representation at 0 of $f(x)=\frac{1}{(1+x)^{2}}$.
b. Using your answer from part a. to find the Taylor series representation at 0 of

$$
f(x)=\frac{1}{(1+x)^{3}}
$$

