Math 8 Chain Rule

Practice Problems

1) Using the chain rule find $\frac{dz}{dt}$ for the following: a) $z = x^2 + y^5 + 2x^2y$, $x = \ln t$, $y = t^2 + t + 1$ b) $z = x^2y^2$, $x = \cos t$, $y = \sin t$

2) Using the chain rule find the following:

- a) For $z = \sqrt{x+y}$, x = st + s + t, $y = s\sqrt{t}$; find $\frac{dz}{dt}$ and $\frac{dz}{ds}$ when (s,t) = (1,2).
- b) $z = x^2 + xy + y^2$, $x = r \cos \theta$, $y = r \sin \theta$; find $\frac{dz}{dr}$ and $\frac{dz}{d\theta}$ when $(r, \theta) = (3, \pi/2)$.

3) The radius of a right circular cone is increasing at a rate of 2cm/sec while its height is decreasing at a rate of 4cm/sec. At what rate is the volume of the cone changing when the radius is 10cm and the height is 7cm.

(Recall: the volume of a right circular cone is $\frac{\pi r^2 h}{3}$.)

Problem to Turn In

1) Let
$$z = \frac{x+y}{x+1}$$
, $x = ue^p$, $y = pe^u$. Using the chain rule find $\frac{\partial}{\partial u} \left(\frac{\partial z}{\partial p}\right)$
when $(u, p) = (1, -3)$.

2) The temperature at a point (x, y) is given by the function T(x, y). Assume a bug crawls along the (x, y)-plane so that its position, at each point of time, is given by

$$x(t) = \sqrt{1+t}$$
 $y(t) = 1+2t.$

a) Draw the path taken by the bug (assume $0 \le t$).

b) Find dT/dt when t = 3, assuming $T_x(2,7) = -5$ and $T_y(2,7) = 10$. In a few words, describe the meaning of the quantity dT/dt in this context.