Math 8

Chain Rule

Practice Problems

1) Using the chain rule find $\frac{d z}{d t}$ for the following:
a) $z=x^{2}+y^{5}+2 x^{2} y, x=\ln t, y=t^{2}+t+1$
b) $z=x^{2} y^{2}, x=\cos t, y=\sin t$
2) Using the chain rule find the following:
a) For $z=\sqrt{x+y}, x=s t+s+t, y=s \sqrt{t}$;
find $\frac{d z}{d t}$ and $\frac{d z}{d s}$ when $(s, t)=(1,2)$.
b) $z=x^{2}+x y+y^{2}, x=r \cos \theta, y=r \sin \theta$;
find $\frac{d z}{d r}$ and $\frac{d z}{d \theta}$ when $(r, \theta)=(3, \pi / 2)$.
3) The radius of a right circular cone is increasing at a rate of $2 \mathrm{~cm} / \mathrm{sec}$ while its height is decreasing at a rate of $4 \mathrm{~cm} / \mathrm{sec}$. At what rate is the volume of the cone changing when the radius is 10 cm and the height is 7 cm .
(Recall: the volume of a right circular cone is $\frac{\pi r^{2} h}{3}$.)

Problem to Turn In

1) Let $z=\frac{x+y}{x+1}, x=u e^{p}, y=p e^{u}$. Using the chain rule find $\frac{\partial}{\partial u}\left(\frac{\partial z}{\partial p}\right)$ when $(u, p)=(1,-3)$.
2) The temperature at a point (x, y) is given by the function $T(x, y)$. Assume a bug crawls along the (x, y)-plane so that its position, at each point of time, is given by

$$
x(t)=\sqrt{1+t} \quad y(t)=1+2 t
$$

a) Draw the path taken by the bug (assume $0 \leq t$).
b) Find $d T / d t$ when $t=3$, assuming $T_{x}(2,7)=-5$ and $T_{y}(2,7)=10$. In a few words, describe the meaning of the quantity $d T / d t$ in this context.

