Math 8
Partial Derivatives \& Tangent Planes

Practice Problems

1) Compute f_{x} and f_{y} for the following functions.
a) $f(x, y)=(2 x+3 y)^{10}$
b) $f(x, y)=\frac{e^{-x}}{\left(x+y^{2}\right)}$
c) $f(x, y)=\arctan (x \sqrt{y})$
2) Compute the following limit or show that it does not exist.

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x y \cos (y)}{3 x^{2}+y^{2}}
$$

3) Find $f_{x y}$ where

$$
f(x, y)=\sin \left(\cos \left(\tan \left(\frac{x^{2}+x}{x+2}\right)\right)\right)+e^{x y} \sin (y)
$$

(Hint: There is an easy way to do this!)
4) Find the equation for the tangent plane of $f(x, y)=\frac{x}{(x+y)}$ at $(2,1)$.
5) Let $f(x, y)=x^{2}-x y+3 y^{2}$. Using tangent planes, estimate $f(2.96,-.95)$. Compare your estimate to the correct answer (you may use a calculator to do this).

Problem to Turn In

1) Let $f(x, y)$ be a surface, that contains the point $(2,1,3)$. Further, assume that

$$
r(t)=<2+3 t, 1-t^{2}, 3-4 t+t^{2}>
$$

and

$$
s(u)=<1+u^{2}, 2 u^{3}-1,2 u+1>
$$

are curves that lie on the surface $f(x, y)$. Find the plane tangent to $f(x, y)$ at the point $(2,1,3)$.

