Math 8
Vector Valued Functions \& Their Derivatives

## Practice Problems

1) Sketch the following 2 -space vector function on the $x y$-plane:
a) $r(t)=<t, \sin t>$
b) $r(t)=<\sin t, t>$
c) $r(t)=<t^{2}, t^{4}>$
2) Describe in words AND with a picture the curve $r(t)=<t \cos t, t \sin t, t>$.
3) Find a vector function that represents the curve of intersection of the cylinder $x^{2}+y^{2}=4$ and the surface $z=x y$.
4) Do Problems 21-26 on page 870 in Stewart Edition 7.
5) At what point(s) does the curve $r(t)=<3 t, 0,2 t-t^{2}>$ intersect the paraboloid $z=x^{2}+y^{2}$.
6) For the following vector function, find the tangent vector AND the equation of the tangent line at the given point:
a) $r(t)=<\cos t, \sin t, t>$, at $t=2 \pi$.
b) $r(t)=<e^{t}, e^{-t},-\ln t>$, at $t=1$.
7) For the curve $r(t)=<t, 1+t^{2}>$ find:
a) The points where $r(t)$ and $r^{\prime}(t)$ are perpendicular.
b) The points where $r(t)$ and $r^{\prime}(t)$ are pointing in the same direction.
c) The points where $r(t)$ and $r^{\prime}(t)$ are pointing in the opposite direction.
8) Find the arc length of the curve $r(t)=<3 \cos ^{3} t, 3 \sin ^{3} t, 6>$, when $0 \leq t \leq 2 \pi$.
9) Find the arc length of the curve $r(t)=<\frac{t^{2}}{4}-\frac{\ln t}{2},-1, t>$, when $1 \leq t \leq 2$.

## Problems to Turn In

1) Find a vector function $r(t)$ so that $r(0)=<3,0,0>, r(2 \pi)=<3,0,2 \pi>$, and as $t$ increases from 0 to $2 \pi$ it traces out the ellipse $x^{2}+9 y^{2}=9$ one time as it climbs up the $z$-axis.
2) Show that the tangent vector is always perpendicular to the radius of a circle. Hint: How do we parameterize a circle in 2-Space?
$3)$ Find the arc length of the curve $r(t)=<t, \frac{t^{3}}{3}+\frac{1}{4 t},-19>$, determined by $1 \leq t \leq 2$.
