Math 8
Homework Set \#5
Integral \& Comparison Test

Practice Problems

Determine if the following series converge or diverge:

1) $\frac{2}{5}+\frac{2}{8}+\frac{2}{11}+\frac{2}{14}+\cdots$
2) $\sum_{n=1}^{\infty} \frac{n^{2}}{\sqrt{1+n^{4}}}$
3) $\sum_{n=2}^{\infty} \frac{5}{n(\ln n)^{2}}$
4) $\sum_{n=2}^{\infty} \frac{n}{n^{4}-1}$
5) $\sum_{n=1}^{\infty} \frac{\cos ^{2} n}{n^{2}}$
6) $\sum_{n=1}^{\infty} \frac{\ln n}{n^{3}}$
7) $\sum_{n=1}^{\infty} \frac{\sin \left(\frac{1}{n}\right)}{n^{2}}$

As we mentioned in class it is often extremely difficult, if not impossible, to find the exact value of a series. To get around this problem it is common practice to approximate the exact value of a series by adding up the first $10,100,1000$, or more terms of the series. For example, if our series is $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ then adding up the first 10,100 , or 1000 terms yields the following approximations:

$$
\sum_{n=1}^{10} \frac{1}{n^{2}}=1.5497 \quad \sum_{n=1}^{100} \frac{1}{n^{2}}=1.63498 \quad \sum_{n=1}^{1000} \frac{1}{n^{2}}=1.6439
$$

The natural question is how many terms do we have to add up to insure that our approximation is good? To answer this observe that the error between the exact value of the series and our approximation (with 100 terms) of the series is

$$
\underbrace{\sum_{n=1}^{\infty} \frac{1}{n^{2}}}_{\text {exact value }}-\underbrace{\sum_{n=1}^{100} \frac{1}{n^{2}}}_{\text {approx. }}=\underbrace{\sum_{n=101}^{\infty} \frac{1}{n^{2}}}_{\text {error }}
$$

To answer this question we need to add up enough terms so that our error term is very small. In fact, we can say this about the error term:

$$
\begin{equation*}
\sum_{n=k+1}^{\infty} \frac{1}{n^{2}} \leq \int_{k}^{\infty} \frac{1}{x^{2}} d x \tag{1}
\end{equation*}
$$

Using this fact about the error term (you do not need to prove it) you can now answer the initial question!
8) What is the smallest value of k needed to guarantee that the approximation $\sum_{n=1}^{k} \frac{1}{n^{2}}$ is within $1 / 1000$ of the exact value $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$?

Optional Problem: Explain why the inequality given in (1) is valid.

Problems to Turn In

1) Confirm, in two different ways, that the series $\sum_{n=1}^{\infty} n e^{-n}$ converges. First using the ratio test and second using the integral test.
2) Explain why it is true that if $\sum_{n=1}^{\infty} a_{n}$ converges and $0<a_{n}$ then $\sum_{n=1}^{\infty} a_{n}^{2}$ also converges.
