
Math 8
Homework Set #5

Integral & Comparison Test

Practice Problems

Determine if the following series converge or diverge:
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As we mentioned in class it is often extremely difficult, if not impossible, to find the exact
value of a series. To get around this problem it is common practice to approximate the
exact value of a series by adding up the first 10, 100, 1000, or more terms of the series. For

example, if our series is
∞∑
n=1

1

n2
then adding up the first 10, 100, or 1000 terms yields the

following approximations:
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The natural question is how many terms do we have to add up to insure that our ap-
proximation is good? To answer this observe that the error between the exact value of the
series and our approximation (with 100 terms) of the series is
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To answer this question we need to add up enough terms so that our error term is very
small. In fact, we can say this about the error term:
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Using this fact about the error term (you do not need to prove it) you can now answer
the initial question!

8) What is the smallest value of k needed to guarantee that the approximation
k∑
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within 1/1000 of the exact value
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?

Optional Problem: Explain why the inequality given in (1) is valid.

Problems to Turn In

1) Confirm, in two different ways, that the series
∞∑
n=1

ne−n converges. First using the ratio

test and second using the integral test.

2) Explain why it is true that if
∞∑
n=1

an converges and 0 < an then
∞∑
n=1

a2n also converges.
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