Math 8
 Equation of Lines and Planes

Practice Problems

1) Find both vector and parametric equations for the line...
a) through the point $(6,-5,2)$ and parallel to the vector $<1,3,-4\rangle$.
b) through the point $(0,14,-3)$ and parallel to the line $x=-1+2 t, y=6-3 t, z=3+9 t$.
c) through the origin and perpendicular to the plane $x+7 y-2 z=1$.
2) Is the line through $(-4,-6,1)$ and $(-2,0,-3)$ parallel to the line through $(10,18,4)$ and $(5,3,14)$?
$3)$ Is the line through $(-2,4,0)$ and $(1,1,1)$ perpendicular to the line through $(2,3,4)$ and $(2,-1,-8)$?
3) Determine whether each statement is true or false,
a) Two planes either intersect or are parallel.
b) Two lines either intersect or are parallel.
c) Two lines parallel to a third line are parallel.
d) Two lines perpendicular to a third line are parallel.
e) A plane and a line either intersect or are parallel.
4) Find the equation of a plane that has normal vector $\langle 1,4,-1\rangle$ and contains the point $(-1,2,-4)$.
5) Find the equation of a plane that contains the points $A=(0,0,3), B=(0,2,0), C=$ $(1,0,0)$.
6) Find the equation of a plane that passes through the point $(-1,2,1)$ and contains the line of intersection of the planes $x+y-z=2$ and $2(x-1)-y+3(z-2)=0$.
7) Find the equation of a plane that contains the point $(1,5,1)$ and is perpendicular to the planes

$$
2 x+y-2 z=2 \quad \text { and } \quad x+3 z=4
$$

9)

a. Find an equation for the line of intersection of the planes $x+y+z=1$ and $x+2 y+2 z=$ 1.
b. What is the angle between these two planes?

Problems to Turn In

Let \vec{a} and \vec{b} be two vectors where θ is the angle between them.

Recall from class, that L is the length of the shadow projected orthogonally by \vec{b} onto \vec{a}. By the dot product formula we know that

$$
\cos \theta=\frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|},
$$

and therefore

$$
L=|\vec{b}| \cos \theta=\frac{\vec{a} \cdot \vec{b}}{|\vec{a}|}
$$

Mathematically, L is called the scalar projection of \vec{b} onto \vec{a}. Use this idea of scalar projection to solve the following two problems.

1) Find the distance from the point $(1,-2,4)$ to the line $x=1+t, y=3-2 t$, and $z=4-3 t$..
2) Find the distance from the point $(1,-2,4)$ to the plane $3 x+2 y+6 z=5$.
