Math 8
Dot Product \& Cross Product

Practice Problems

1) Find vectors in the same direction as $\langle 1,1,1\rangle$ that have length 1 and 3 .
2) Compute the following where $\vec{a}=<1,-3,4>$ and $\vec{b}=<0,3,7>$ and $\vec{c}=<1,2,3>$.
a) $\vec{a} \cdot \vec{b}$
b) $\vec{b} \times \vec{c}$
c) $\vec{a} \times(\vec{b} \times \vec{c})$
d) $\vec{a} \cdot(\vec{a} \times \vec{b})$
3) Find the angle between the vectors $\vec{a}=<2,4,6>$ and $\vec{b}=<-1,8,0>$.
4) Find the angle between the diagonal of a cube and one of its edges.
5) For what values of b are the vectors $\langle-6, b, 2\rangle$ and $\left\langle b, b^{2}, b\right\rangle$ orthogonal?
6) Find a vector orthogonal to $\vec{a}=<1,-2,3>$ and $\vec{b}=<-3,2,-1>$. Check your answer using the dot product.
7) Find the area of the triangle determined by the points $(0,-2,0),(4,1,2)$, and $(5,3,1)$.

Note: the following three problems can be answered without doing any calculations. Instead, appeal to the meaning of the dot product and cross product.
8) Assume \vec{a} and \vec{b} are parallel. Explain why $\vec{a} \times \vec{b}=<0,0,0>$?
9) Explain why $\vec{a} \cdot(\vec{a} \times \vec{b})=0$ must always hold for all vectors \vec{a} and \vec{b}.
10) Determine the following using the right hand rule.
a) $i \times j$
b) $i \times k$
b) $j \times k$
c) $(i \times j) \times j$

Recall: $i=<1,0,0>, j=<0,1,0>$ and $k=<0,0,1>$.

Problems to Turn In

1) Find the angle between a diagonal of a cube and a diagonal of one of its faces.
2) Assume $\vec{a} \cdot \vec{b}=0$ and $\vec{a} \times \vec{b}=<0,0,0>$. Explain why $\vec{a}=<0,0,0>$ or $\vec{b}=<0,0,0>$. No calculation is necessary!
3) Let $\vec{a}=<-1,3,0>$ and $\vec{b}=<-1,3,6>$.
a) Find the scalar projection ℓ of \vec{b} onto \vec{a}.
b) Find the vector \vec{c} in the direction of \vec{a} with length ℓ.
c) Show that $(\vec{b}-\vec{c}) \cdot \vec{a}=0$. Explain why this must be the case for any vectors \vec{a} and \vec{b}.
