Math 8 Dot Product & Cross Product

Practice Problems

- 1) Find vectors in the same direction as < 1, 1, 1 > that have length 1 and 3.
- 2) Compute the following where $\vec{a} = <1, -3, 4>$ and $\vec{b} = <0, 3, 7>$ and $\vec{c} = <1, 2, 3>$.
 - a) $\vec{a} \cdot \vec{b}$ b) $\vec{b} \times \vec{c}$ c) $\vec{a} \times (\vec{b} \times \vec{c})$ d) $\vec{a} \cdot (\vec{a} \times \vec{b})$
- 3) Find the angle between the vectors $\vec{a} = <2, 4, 6 > \text{and } \vec{b} = <-1, 8, 0 >$.
- 4) Find the angle between the diagonal of a cube and one of its edges.
- 5) For what values of b are the vectors < -6, b, 2 > and $< b, b^2, b >$ orthogonal?

6) Find a vector orthogonal to $\vec{a} = <1, -2, 3 >$ and $\vec{b} = <-3, 2, -1 >$. Check your answer using the dot product.

7) Find the area of the triangle determined by the points (0, -2, 0), (4, 1, 2), and (5, 3, 1).

Note: the following three problems can be answered without doing any calculations. Instead, appeal to the meaning of the dot product and cross product.

8) Assume \vec{a} and \vec{b} are parallel. Explain why $\vec{a} \times \vec{b} = <0, 0, 0>?$

9) Explain why $\vec{a} \cdot (\vec{a} \times \vec{b}) = 0$ must always hold for all vectors \vec{a} and \vec{b} .

10) Determine the following using the right hand rule.

- a) $i \times j$ b) $i \times k$
- b) $j \times k$ c) $(i \times j) \times j$

Recall: i = < 1, 0, 0 >, j = < 0, 1, 0 > and k = < 0, 0, 1 >.

Problems to Turn In

1) Find the angle between a diagonal of a cube and a diagonal of one of its faces.

2) Assume $\vec{a} \cdot \vec{b} = 0$ and $\vec{a} \times \vec{b} = < 0, 0, 0 >$. Explain why $\vec{a} = < 0, 0, 0 >$ or $\vec{b} = < 0, 0, 0 >$. No calculation is necessary!

3) Let $\vec{a} = < -1, 3, 0 > \text{and } \vec{b} = < -1, 3, 6 >$.

- a) Find the scalar projection ℓ of \vec{b} onto \vec{a} .
- b) Find the vector \vec{c} in the direction of \vec{a} with length ℓ .
- c) Show that $(\vec{b} \vec{c}) \cdot \vec{a} = 0$. Explain why this must be the case for any vectors \vec{a} and \vec{b} .