Math 8
Vectors in 2-Space and 3-Space

Practice Problems

1) Given the vectors \vec{a} and \vec{b}

sketch in 2-Space the following vectors.
a) $\vec{a}+\vec{b}$
b) $\vec{a}-\vec{b}$
c) $-\vec{a}+2 \vec{b}$
2) Let $\vec{a}=<5,-12,1>$ and $\vec{b}=<-1,2,8>$. Find the following
a) $\vec{a}+\vec{b}$
b) $|\vec{a}+\vec{b}|$
c) $3 \vec{a}-2 \vec{b}$
d) $|3 \vec{a}-2 \vec{b}|$
3) Let $\vec{a}=<1, \sqrt{3}, 0>$
a) What is the angle between \vec{a} and the x-axis?
b) What is the angle between \vec{a} and the vector $\langle 0,0,1\rangle$?
4) A person walks due west on the deck of a ship at $3 \mathrm{mi} / \mathrm{h}$. The ship is moving north at a speed of $22 \mathrm{mi} / \mathrm{h}$. Find the speed and direction of the women relative to the surface of the water.

Problems to Turn In

1) Let $\vec{r}=<x, y, z>$ and $\vec{c}=<3,-1,6>$. Give an equation for the set of points (x, y, z) where $|\vec{r}-\vec{c}|=1$. What does this equation describe?
2) Let $A=(1,1,1), B=(3,2,1)$ and $C=(2,2,4)$. Show that

$$
\overrightarrow{A B}+\overrightarrow{B C}+\overrightarrow{C A}=0
$$

In fact, this will be the case for any points A, B, and C. Explain, in words or with a picture why this must be true.
3) Let $\vec{a}=<a_{1}, a_{2}, a_{3}>$ and $\vec{b}=<b_{1}, b_{2}, b_{3}>$ be vectors such that

$$
|\vec{a}-\vec{b}|=|\vec{a}+\vec{b}|
$$

a) What can you conclude about the parallelogram generated by \vec{a} and \vec{b} ? What must the angle be between these two vectors?
b) We will define in class the dot product of two vectors \vec{a} and \vec{b} as

$$
\vec{a} \cdot \vec{b}=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}
$$

and show that this quantity is very useful when studying vectors. For now show that $\vec{a} \cdot \vec{b}=0$ assuming $|\vec{a}-\vec{b}|=|\vec{a}+\vec{b}|$.

