Math 8
Lagrange Multipliers

Practice Problems

1) Using Lagrange Multipliers find the minimum and/or maximum for the following:
a. $\quad f(x, y)=x^{2}+y^{2}$ subject to the constraint $x y=1$.
b. $f(x, y)=y^{2}-x^{2}$ subject to the constraint $x^{2}+4 y^{3}=4$.
c. $f(x, y)=e^{x+y}$ subject to the constraint $x^{2}+y^{2}=1$.
d. $f(x, y, z)=x y^{2} z$ subject to the constraint $x^{2}+y+z^{2}=1$.
e. $f(x, y, z)=2 x+3 y+5 z$ subject to the constraint $x^{2}+y^{2}+z^{2}=38$.
2) A soft-drink manufacturer wants to design an aluminum can in the shape of a right circular cylinder to hold 8 oz . If the object is to minimize the amount of aluminum used (top, sides, bottom), what dimensions should be used?
3) Find the points on the circle $x^{2}+y^{2}=5$ that are closest and farthest from the point $(2,1)$. (Hint: Consider the distance squared.)
4) Using Lagrange Multipliers, find the points on the surface $z^{2}=x^{2}+y^{2}$ that are closest to the point $(4,2,0)$. Compare this with HW \#9.3.
5) Show that the rectangular box of maximum volume that can be inscribed in the sphere $x^{2}+y^{2}+z^{2}=9$ is a cube.
