Math 8 Lagrange Multipliers

Practice Problems

1) Using Lagrange Multipliers find the minimum and/or maximum for the following:

- a. $f(x,y) = x^2 + y^2$ subject to the constraint xy = 1.
- b. $f(x,y) = y^2 x^2$ subject to the constraint $x^2 + 4y^3 = 4$.
- c. $f(x,y) = e^{x+y}$ subject to the constraint $x^2 + y^2 = 1$.
- d. $f(x, y, z) = xy^2 z$ subject to the constraint $x^2 + y + z^2 = 1$.
- e. f(x, y, z) = 2x + 3y + 5z subject to the constraint $x^2 + y^2 + z^2 = 38$.

2) A soft-drink manufacturer wants to design an aluminum can in the shape of a right circular cylinder to hold 8 oz. If the object is to minimize the amount of aluminum used (top, sides, bottom), what dimensions should be used?

3) Find the points on the circle $x^2 + y^2 = 5$ that are closest and farthest from the point (2, 1). (Hint: Consider the distance squared.)

4) Using Lagrange Multipliers, find the points on the surface $z^2 = x^2 + y^2$ that are closest to the point (4,2,0). Compare this with HW #9.3.

5) Show that the rectangular box of maximum volume that can be inscribed in the sphere $x^2 + y^2 + z^2 = 9$ is a cube.