
Math 8
Homework Set #1

Sequences

Find a formula for the general term an of the sequence, assuming that the pattern of the
first few terms continues.
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Determine whether each of the following sequence converges, diverges, or diverges to infinity
and explain your reasoning. If it converges, find the limit.
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In class we discussed the advantages of representing functions as “infinite polynomials”,
which we call Taylor series. For example, we saw that
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In fact any “infinite polynomial” will always look like

c0 + c1x + x2x
2 + c3x

3 + . . .

where the cn are just coefficients. As the terms in this infinite sum yield the sequence
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3, . . .

we will be very interested in understanding sequences of this form. The next few problems
deal explicitly with such sequences.

1



10) For the following sequence determine the values of x, if any, that make the sequence
convergent. What does it converge to? Explain your reasoning.
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11) Assume the following sequence converges to some number L, find L.
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Problems to Turn In

1) Find the limit of the following sequence.
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2) For the following sequence determine the values of x, if any, that make the sequence
convergent. What does it converge to? Explain your reasoning.
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