Math 8
Final Exam Practice

Multivariable Calculus

1) Find the values of x such that the vectors $\langle 3,2, x\rangle$ and $\langle 2 x, 4, x\rangle$ are orthogonal.
2) Find two unit vectors that are orthogonal to both $\langle 0,1,2>$ and $<1,-2,3\rangle$.
3) Let $A=(1,0,0), B=(2,0,-1)$, and $C=(1,4,3)$ be points in 3 -space.
a. Find a vector perpendicular to the plane containing the points A, B, and C.
b. Find the area of triangle $A B C$.
4) Find an equation of the line...
a) that contains the points $(4,-1,2)$ and $(1,1,5)$.
b) that contains the point $(1,0,-1)$ and is perpendicular to the plane $2 x-y+5 z=12$.
5) Find the equation of a plane...
a) that contains the points $(2,1,0),(4,0,2)$, and $(6,3,1)$.
b) that contains the point $(1,2,-2)$ and contains the line $x=2 t, y=3-t, z=1+3 t$.
6) Find the length of the curve $r(t)=<2 t^{3 / 2}, \cos 2 t, \sin 2 t>$, where $0 \leq t \leq 1$.
7) Find the equation of the line tangent to the curve $r(t)=<\frac{t^{3}}{3}, \frac{t^{2}}{2}, t>$, when $t=1$.
8) Find the equation of the tangent plane to the surface $z=e^{x} \cos y$ at the point $(0,0,1)$.
9) Find the local maximum and minimum values and saddle point of the function

$$
f(x, y)=\left(x^{2}+y\right) e^{y / 2}
$$

10) Find the absolute maximum and minimum values of $f(x, y)=4 x y^{2}-x^{2} y^{2}-x y^{3}$ on the closed triangular region in the $x y$-plane with vertices $(0,0),(0,6)$, and $(6,0)$.
11) A package in the shape of a rectangular box can be mailed by the US Postal Service if the sum of its height and girth (the perimeter of its base) is at most 108 in . Find the dimensions of the package with largest volume that can be mailed?
12) Let $x+2 y-7 z=0$ be the equation of a plane and let A be the point $(5,12,-19)$. Find the distance from the point A to the plane...
a) using scalar projection. (It might be helpful to review HW \#4.)
b) using partial derivatives and critical points.
c) using Lagrange Multipliers.
