Math 8, May 3, 2000

1 Linear Equations and Matrices

Many problems in mathematics eventually lead to solving a system of linear
equations. We have already run into some of them. We are about to learn a
method of solving systems of linear equations using matrices.

Matrices are very useful in mathematics and in applied mathematics, and
not just for solving systems of linear equations. For one thing, in multivari-
able calculus, the derivative of a function at a point is not just a single
number, it is a matrix. The operations with matrices we will learn here, in
particular matrix multiplication, are also widely applicable.

2 Operations on Systems of Linear Equations

2.1 An example

Example: Find the intersection of the three planes with equations

2 —4dy+32=1
r+y+z=3
3r —y—z=1

Solution: Generally we expect the intersection of three planes to be a single
point, but this does not always happen; three planes can have no intersection,
or intersect in a line, or even in a plane (if the three planes are all the same.)
So our problem is to find all the points (x,y, z) in the intersection of these
planes. This is the same as finding all values of =, y and z for which all
three equations hold. We call this solving a system of linear equations.
A value of (z,y,z) for which all three equations hold is a solution of the
system; solving the system means finding all the solutions.

Our method is going to be to convert this system into a simpler but
equivalent system. Two systems of linear equations are equivalent if they
have exactly the same solutions. For example, obviously we don’t change
anything about the solutions to the system if we multiply an equation through



by a constant (as long as we don’t multiply by zero.) So we’ll multiply the

first equation by 5 Our new system, equivalent to the old one, is:

The next thing we’ll do is subtract equation 1 from equation 2 (so our
new equation 2 is the old equation 2 minus the old equation 1, and equations
1 and 3 are unchanged.) This also does not change anything about the
solutions to our system of equations; the new system is still equivalent to the
original one:

We'll subtract 3 times equation 1 (or add —3 times equation 1) to equation
3, to eliminate x from equation 3:
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Now we have an x term, with coefficient 1, in equation 1, and we have
eliminated z from the other two equations. The next step is to try for a



y term, with coefficient 1, in equation 2, and eliminate y from the other
equations. We'll use the same two kinds of operations: Multiply an equation
by a non-zero constant. Add a constant multiple of one equation to another
equation. See if you can follow the steps:
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First we multiplied the second equation by 3" Then we added 2 times the

second equation to the first equation. Then we added —5 times the second
equation to the third equation.
Now we'll take care of z:



r=1
1 5
J— _ z = —
Y7\6 6
z=1
r=1
z=1

The three planes intersect in the single point (1,1, 1).

2.2 The general method

Whenever we have a system of simultaneous linear equations to solve we try
to do something like this. We start with a system:

a1Ty + agxe + - -+ apT, = Qo
b1y + boxg + -+ - + by, = by

C1%1 + C2T2 + - -+ + CrTy = Cp



We convert it to an equivalent system by a sequence of operations. There
are three allowable operations:

1. Multiply an equation by a non-zero constant.
2. Add a multiple of one equation to another equation.

3. Change the order in which the equations are written by interchanging
two equations.

We are hoping, in the ideal situation, to end up with an equivalent system
that looks like this:

x1 = number;
To9 = numbers

x3 = numbers

In other words, we are hoping to find a unique solution to our system. Of
course this doesn’t always happen; there isn’t always a unique solution. If
our system consists of the equations of three planes that intersect in a line,
there are infinitely many solutions (all the points on the line.) We'll see an
example of that in a moment. First, a matrix method of organizing things,
that saves writing (if nothing else) and lets us make things very systematic.



3 A Matrix Method for Solving Systems of
Linear Equations

3.1 From System of Equations to Matrix
In solving our system of linear equations
2 —4dy+3z2=1

r+y+z=3
3r —y—z=1

we ended up writing many equivalent versions of this system as we went
through the various steps. Every version looked something like

Tyt _z=_
Tyt _z=_
Tyt _z=_

with different coefficients and constant terms put into the blank spaces. We
could choose not to write all the extra stuff, and simply work with those
coefficients and constant terms. In order to keep track of which coefficient
or constant goes where, we arrange them into a rectangular array called a
matrix.

The “coefficient matrix” of a system is the matrix whose rows are the
coefficients of z, y and z in the different equations, arranged in the same
order in each row; in this example it is natural always to put the coefficient
of x first, then the coefficient of y, then the coefficient of z. So we write the
coefficient matrix like this:

2 -4 3
A=|11 1 1
3 -1 -1

This is a 3 X 3 matrix, meaning that it has three rows (one for each equation)
and three columns (one for each variable.) The entry in row ¢, column j of A
(sometimes denoted a;;) comes from equation number i, and is the coefficient



of variable number 7 in that equation. So the entry in row 3, column 1 is 3
because in equation 3 the 1% variable o has a coefficient of 3.

The constant terms from all the equations can be arranged into matrix
consisting of a single column. Such a matrix is also called a column vector.
In this case we have a 3 x 1 matrix, three rows and one column.

1
B=1| 3
1

Finally, we obtain the augmented matriz of the system by putting the coef-
ficient matrix and the column vector of constant terms next to each other in
a single matrix like this::

2 —4 3 :1

1 1 1 : 3

3 -1 -1 : 1
Notice the vertical line of dots separating the two component matrices. Some-
times this separating line is drawn as a solid vertical line. This augmented
matrix contains all of the numbers that we need to work with in solving our
system of equations.

We have already gone through the steps of solving the system of linear
equations. Let’s go through those steps again, working just with the matrix.

Our first step was to multiply the first equation by 5 Therefore we multiply

1
the first row of the matrix by o

1 =2
1 1
3 —1 —1 : 1

Next we subtracted equation 1 from equation 2, so we now subtract row
1 of the matrix from row 2:
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3 1
L =2 3 3
1 5
0 3 -3t 3
3 -1 -1 ¢ 1



Finally we added —3 times equation 1 to equation 3, so working with the
matrix, we add —3 times row 1 to row 3:

I
0 3 -1 i 3
05—%:—%

At this point, our system of linear equations had an z term with coefficient
1 in the first equation, and we had eliminated z from the other two equations.
This means that in the first column of our matrix (the column in which we
put the coefficients of x), the first entry is 1 and all the other entries are
zero. Next, working with the equations, we made the coefficient of y in the
second equation equal to 1, and eliminated y from the other two equations.
In terms of the matrix, this means we want the second column to have a 1
in row 2 and a zero in the other rows.

With the system of linear equations, we multiplied equations by non-zero
constants, and added multiples of one equation to another. Working with
the matrix, we will multiply rows by non-zero constants, and add multiples
of one row to another. See if you can follow the steps:

3 1
I =2 3 3
1 5
0 1 —5 c
11 1
05 -5 =3
7 13
1 5
01 —3 G
11 1
05 =5 ¢ —3
7 13
1 : 5
O ]. _6 . 6
28 28
00 -2 : _=

1
First we multiplied the second row by —. Then we added 2 times the

second row to the first row. Then we added —5 times the second row to the
third row. Here are the operations that finish the job:



7
10 £ i

1 5
01 =5 : 3
00 1 § 1
1 0 O 1

1 5
01 =5 %
00 1 i1
1001
01 0% 1
00 1:%1

Finally, we need to go from this matrix back to a system of linear equa-
tions. Remember that each row of the matrix corresponds to an equation.
The columns contain, in order, the coefficients of x, the coefficients of y, the
coefficients of z, and the constant terms. (Notice that it is important to keep
track of which column corresponds to which variable.) So our new system
(equivalent to our old one) is

lr4+0y+0z=1
Oz +1ly+0z2=1
Oz +0y+1z2=1

=1
y=1
z=1

3.2 Row-Reduction of Matrices

In working with the matrix in the last section, we were allowed to do with
the rows the same things we are allowed to do with the individual equations
in a system of equations:



1. Multiply any row by a non-zero constant.
2. Add a constant multiple of any row to any other row.

3. Interchange any two rows.

These three operations to a matrix are called elementary row opera-
tions. These operations convert the augmented matrix of a system of equa-
tions to the augmented matrix of an equivalent system of equations.

Notice that in doing this conversion of the original matrix to an equiv-
alent one, we are trying to obtain a matrix with a special form: one that
corresponds to a system of linear equations whose solution is easy to write
down. We actually wanted a system that looked like

T = number;y

Yy = numbers
z = numbers

Of course, we can’t always get a system like this, but we can always get
a system whose solution is easy to write down. To do this, we put the
augmented matrix of the system into a special form.

To describe this desired matrix form, we need one piece of terminology:
The leading entry of a row of a matrix is the first entry in that row that
is not 0. The form into which we are trying to put our matrix is a form
satisfying these three conditions:

1. The leading entry of every row is 1. (An exception: A row may consist
entirely of zeroes, and therefore have no leading entry.)

2. If a column contains the leading entry of any row, then every other
entry in that column is 0.

3. As we go down the rows, the positions of the leading entries move from
left to right. (Also, any row consisting entirely of zeroes comes after
all the rows with leading entries.)

Such a matrix is said to be in row reduced form, or row echelon form
and the process of using elementary row operations to put a matrix into row
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echelon form is called row reduction. These definitions will be made more
clear with an example.

Example: A system of linear equations in variables x, y and z has the
following augmented matrix.

2 0: 6
0 1 : 3
0 0 : 2

Determine whether the matrix is in row echelon form. If not, use row reduc-
tion to put it into row echelon form, and give the solution to the system.

Solution: This matrix is not in row echelon form. In fact, it violates all
three criteria for being in row echelon form: The leading entry in row 1 is
not 1. Column 2 contains the leading entry of row 3, but not all its other
entries are 0 (it has a 2 in row 1.) Going down from row 2 to row 3, the
positions of the leading entries move from right to left (column 3 to column
2) instead of left to right. We can put the matrix in row echelon form by the
following sequence of operations:

1
(1.) Multiply row 1 by %

110 : 3
001 3
010 : 2

110 : 3
010 : 2
001 3

(3.) Add —1 times row 2 to row 1:
100
010 : 2
001 :

11



This matrix is now in row echelon form. We write down the corresponding
system of linear equations:

r=1
y=2
z = 3.

This system is already “solved”, although if we prefer, we can rewrite the
solution in column vector form like this:

x 1
y | =1 2
2 3

3.3 Another example

Example: Find all solutions to the system of equations
y+z=20
20 —y—2z=2
20 + 2y + 22 =2

Solution:
First we write the augmented matrix of our system

0O 1 1 :0
2 -1 -1 : 2
2 2 2 2

Now we use elementary row operations to put this into row echelon form.
Our first sequence of operations will be: Interchange rows 1 and 2. Multiply

the new row 1 by 3" Add —2 times this new row 1 to row 3. The result is

[N
N

o O =
—_
—_
)
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That makes the first column into

1
0
0

which is what we are after. Now we try to make the second column into

0
1
0

We are trying to do this without messing up what we have done with the
first column. So we can interchange any two rows ezcept row 1, multiply any
row except row 1 by a constant, and add multiples of any row except row 1
to any other row (including row 1.) The sequence of operations that does

the job is: Add = times row 2 to row 1. Then add —3 times row 2 to row 3.

This gives the new matrix

100 :1
01 1:0
000 :0

Next we would try to make the third column into

0
0
1

However, there is no way we can do that without interchanging rows 2 and 3
(to put a non-zero entry into row 3, column 3), and that would mess up what
we have already done with column 2. In fact, our matrix is already in row
echelon form, so we are done. Our system of equations has been converted
to

r=1
y+z=0
0=0

13



The point of row echelon form is that the solutions to the system are easy to
write down, and this is true. The first and second equations determine the
values of z and y, and the third one 0 = 0, can be ignored. So we have for
our solutions:

r=1

y=—=2
z = anything

3.4 Expressing Solutions

An alternative way of describing the collection of solutions in the previous
example is to introduce a parameter ¢, and say solutions to the system of
equations are any x, y, z of the form

r=1
y=—t
z =1.

A collection of solutions written in this way is called a parametrized family
of solutions. Essentially, we have introduced the parameter ¢ to stand in for
“anything”. The meaning of this is that, for any particular choice of t, you
get a particular choice for x, y, and z that satisfies the original system of
equations. (That is, ¢t can be anything). Furthermore, any solution to the
original system can be gotten by taking the right value of . In this case,
choosing t = 2 gives one solution

r=1

y=—2

z2=2

. L . . .
and choosing t = ) gives a different solution

r=1

1

Y73



1
z=—=.

2

You might recognize this parametrized family of solutions as being scalar
parametric equations for a line in three dimensions. This is exactly right.
Our original system of linear equations consisted of the equations for three
planes. Solving that system is finding the intersection of the three planes.
These three planes intersect in a line. From the scalar parametric equations
for that line, we can write down a vector parametric equation,

F=i+t(—] + k).

4 Representing Solutions Geometrically

4.1 Solutions in two dimensions

The solutions to a system of linear equations in two variables, such as the
system
T+ 2y =25

3r + 4y = 65.

can be thought of as a collection of points in the plane, in this case in the
x, y-plane. We know a single equation of the form

ar +by =c

is the equation of a line in the plane; that is, the collection of solutions to
that equation, represented as a collection of points in the plane, forms a line.
The two equations in this system are equations of the two lines pictured in
Figure 1.

Solutions to this system of equations are points that are solutions to
each of the individual equations, that is, points that lie on both lines. In this
case, there is exactly one such point, (z,y) = (15,5). This is what we usually
expect, for the solution to a system of two equations in two unknowns; the
intersection of two lines, a single point or a unique solution.

This is not the only possibility, however. The two lines could be parallel,
in which case there are no solutions to the system, because the two lines
do not intersect. Or the two lines could coincide (the two equations could
actually be equations for the same line), in which case there are infinitely
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Figure 1: Solution to a System of Linear Equations

many solutions, namely all the points on that line. The same possibilities (no
solutions, one unique solution, or infinitely many solutions forming a line)
occur with any number of equations in two variables.

These, however, are the only possibilities. For example, it is not possible
to have two (or three, or more) lines intersecting in exactly two points (be-
cause any lines passing through the same two points must be the same line),
S0 it is not possible to have a system of linear equations in two variables with
exactly two solutions.

4.2 Solutions in three dimensions

A similar geometric analysis occurs in three dimensions. We know that just
as the equation
ar +by =c

represents a line in the plane, the equation

ar +by+cz=d

represents a plane in three-dimensional space. So the set of solutions to a
system of linear equations in three variables, viewed as a collection of points
in space, is the intersection of the planes represented by those equations.
There are four possibilities for these solutions corresponding to their geo-
metric representations:

1. The planes do not intersect, and there are no solutions.

2. The planes intersect in a single point, and there is a unique solution.

16



3. The planes intersect in a line, and there is a parametrized family of
solutions, of the form

$:a1+tbl
Y = as + thy
Z:a3+tb3

where ¢ is a parameter.

4. The planes coincide, and there is a parametrized family of solutions, of

the form

T = ay +thy + sc;

Y = ag + thy + sco

z = as + ths + scs
where s and t are two different parameters. This two-parameter family
forms a two-dimensional collection of solutions, which geometrically is
a plane.

Example: In Section 3.3; the three planes with equations
y+2=0
20—y —z =2
20+ 2y +22=2

intersect in the line described by the equations

r=1
y=—t
z=1

as in Figure 2.

Example: Let’s find the intersection of the three planes with equations
y+z=0
20 —y—z=4
2 + 2y + 22 =2

17
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Figure 2: Solution to a System of Linear Equations

The augmented matrix of this system of equations is

0 1 1 :0
2 -1 -1 : 4
2 2 2 2

Put into row echelon form, this becomes

100 :0
0 1 0
000 1



Figure 3: Solution to a System of Linear Equations

This last equation tells us that the system has no solutions. These planes do
not intersect, as in Figure 3. Note: You can see from the equations of the
planes that these three planes are parallel to the three planes in the previous
example.

Example: The system of linear equations
r+y+z=1
20+ 2y +22=2
—r—y—z=-—1

yields the equivalent system (as you should verify for yourself as practice)

r+y+z=1
0=0
0=0.

We can ignore the last two equations. The first one determines the value of
x in terms of y and z:
r=1—-y—=z

19



The leftover variables y and z can be anything, so we can assign them pa-
rameters t and s, to get a parametrized family of solutions

r=1—t—s
y=1
z2=S5

where s and t can be anything. (Note: It is important that we do NOT
assign y and z the same parameter. If we said y =t and z = t, we would
be saying that y = z; but our system of equations does not say that.) These
are parametrized scalar equations for a plane in three dimensions.

4.3 Higher dimensions

A system of linear equations in n different variables, =1, zo, ... , x,, can also
be analyzed geometrically. A linear equation

a1T1 + X2 + - - - + a,Ty, = b

determines an (n — 1)-dimensional collection of solutions (sometimes referred
to as a “hyperplane”.) Two such (n — 1)-dimensional hyperplanes (unless
they happen to be identical) intersect in an (n — 2)(or fewer)-dimensional
collection of solutions, etc.

This means that a system of linear equations in n variables may have
no solutions, a single unique solution, or infinitely many solutions. In the
case of infinitely many solutions, the solutions form a parametrized family,
which may be expressed using anywhere from 1 to n — 1 parameters; this
corresponds to the geometric dimension of the solution set.

Example: The system of equations
vtwt+r+y+z=1

v-—wt+zxr—y+z=3
v—w+3r—y+32=7

has the following three-parameter family of solutions:

v=2—1r—1

20



Exercise 1 For each of the following systems of linear equations, sketch on
the same graph the lines described by each equation, and determine whether
the system has no solutions, one solution, or infinitely many solutions.

r+y=1
3z + 3y =—-3
T+ 2y=2
20 +4y =4
3r—y=3
r—y=3
r+y=1
r—y=1
20—z =2
r+y=1
r—y=—1
20—x =2
r+y=1
T—yY=
y—r=

21



Exercise 2 Determine which of the following matrices are in row echelon
form. For those which are not, give a sequence of elementary row operations
that will put them in row echelon form.

103
01 2
000

— O N

Exercise 3 Solve the system of linear equations
wH+rt+y+z=2
w—z—y=0
S w+y+2z=5
bw+x+2y+42=9

and give the solution in parametric form.

One solution to this system of equations is w = 1, v = —1, y = 2,
and z = 0. What choice of parameters in your solution gives this particular
solution?
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Exercise 4 Solve the following systems of linear equations by row-reducing
their augmented matrices.

r+y=1
rT—y=3
r+y—z=1

20+ 3y +2=206

T—Yy+2z=2
y+z=0
20 —y—z=4

20 + 2y 422 =2

v+w—z=1
20—w=1

v—ax =2

Exercise 5 Ezplain why a system of two linear equations in three variables

may have no solutions or infinitely many solutions, but will never have exactly
one solution.

Which outcomes (no solutions, one solution, infinitely many solutions)
can possibly occur in systems of four linear equations in three variables?
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