
MATH 8 CLASS 7 NOTES, 10/6/2010

So far, we’ve examined sequences and series, and spent a lot of time determining whether
series converge or diverge. In particular, we have tests for geometric series, the nth term
test for divergence, the integral test, the comparison tests, the alternating series test, the
p-series test, and the ratio test. For series passing the integral test or the alternating series
test we even have a way to estimate the error when we approximate the value of such a
series with partial sums. Our current goal is to relate the idea of series, which already
can be seen to be related to calculus, to the functions which were studied so extensively in
Calculus I.

1. Power Series

We will consider a special type of series, which can be thought of as a function of a real
variable x. A series of the form∑

cnx
n, or more generally

∑
cn(x− a)n

is called a power series. The x is to be thought of as a variable, while the cn is some
sequence of numbers. In the case of the latter series, a is some fixed real number, and the
first series is just the special case a = 0 of the second series. The index of summation is
intentionally left vague, but will always start with at least n = 0. (In particular, we do not
allow negative powers of x in a power series.) (When n = 0, we take the 0th term to be c0.
In particular, when x = 0, the power series

∑
cnx

n is equal to c0.)
The partial sums of a power series are polynomials in x, of successively higher degrees.

A question we will study extensively is for what values of x a given power series converges.
For example, any power series

∑
cnx

n converges for x = 0, since every term except possibly
c0 disappears. Before stating the general facts that are true, let us look at several model
examples:

Examples.

•
∑∞

n=0 x
n/n!. We saw this example at the end of last class, and found that it

converges for all x by the ratio test.
•
∑∞

n=0 x
n. This is the power series with an = 1 for all n. As a matter of fact, this is

just a geometric series with a = 1 and r = x. Therefore, this series converges when
|x| < 1 and diverges when |x| ≥ 1. In this example, we know that the value of the
series is 1/(1− x) when it does converge.
•
∑∞

n=0 n!xn. We use the ratio test on this series, and find that the ratio of consecutive
terms is

xn+1(n + 1)!

xnn!
= x(n + 1)

If x 6= 0, then this ratio diverges to infinity, and hence the power series diverges by
the ratio test. So this power series only converges for x = 0.
•
∑∞

n=1 x
n/n. If we use the ratio test on this series, we find the ratio of consecutive

terms is
xn+1n

xn(n + 1)
=

xn

n + 1

Therefore, the ratio test tells us this series converges when |x| < 1, and diverges
when |x| > 1. Notice that the ratio test is inconclusive when |x| = 1. Therefore, for
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these two points, we need to check the convergence or divergence of the power series
using another method. For x = 1 the power series becomes

∑
1/n, which is the

harmonic series, so it diverges. For x = −1, the power series becomes
∑

(−1)n/n,
which is the alternating harmonic series, so this series converges. Therefore, the
power series converges for all x in the interval [−1, 1).

In these examples, we saw cases where power series only converged for x = 0, cases
where the series converged for all x, cases where the series converged for all x in some open
interval (−1, 1), and cases where the series converged for all x in a half open interval. The
common theme for all these cases is that we could find an interval of convergence; ie, we
could describe the set of all x for which these power series converged using an interval. (We
include the cases of x = 0 and all real x as intervals.) As a matter of fact, this holds true
for any power series:

Theorem. Let
∑

cnx
n be any power series. Then there exists a number R, called the

radius of convergence, such that the series diverges for any x with |x| > R, and converges
for any x with |x| < R. We include the cases R = 0,∞, as representing the cases where
x = 0 and all real x are the sets of convergence, respectively.

This theorem is not entirely obvious nor is it particularly easy to show, but in each example
we see we will find it relatively easy to compute an interval of convergence. This theorem
obviously holds true for more general power series

∑
an(x − c)n, except that instead of

looking at |x| < R as a set of convergence, we look instead at the set |x − c| < R as a
set of convergence. Note that this theorem says nothing about whether the power series
in question converges for the two values of x satisfying |x| = R. In general, we cannot
say anything about convergence at these endpoints of the interval, since there are cases
of series where the series diverges at both endpoints, or converges at both endpoints, or
converges at one and diverges at the other. Finally, this theorem really does say that the
set of points for which a power series converges is actually an interval; that is, a set of the
form (a, b), [a, b], etc., with the cases of x = 0 and all x included.

Let us look at some slightly more complicated examples. In all these instances, the test of
choice will be the ratio test, although in some instances, other tests (alternating series test,
nth term test) could also be used. When a question asks for the interval of convergence,
you not only need to calculate the radius of convergence, but also individually test for
convergence at the endpoints of the interval.

Example.

• Determine the interval of convergence of the power series

∞∑
n=0

(−1)nxn

2n + 1
= 1− x/3 +

x2/5− x3/7 + . . .. We apply the ratio test; the ratio of consecutive terms is∣∣∣∣xn+1(2n + 1)

xn(2n + 3)

∣∣∣∣ =

∣∣∣∣x(2n + 1)

2n + 3

∣∣∣∣
This has limit |x| as n→∞, so the radius of convergence of the series is R = 1. We
now test for convergence at the endpoints of the interval. When x = −1, we end
up with the series

∑
n=0 1/(2n + 1). Notice that this looks a lot like a harmonic

series – as a matter of fact, if we multiply the series by 1/2 and add it back to the
original series, we obtain the harmonic series. This shows that this series diverges.
At x = 1, we find that we have the alternating series

∑∞
n=0(−1)n/(2n + 1), which

converges by the alternating series test. Therefore, this power series has interval of
convergence (−1, 1] and radius of convergence R = 1.
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• Determine the interval of convergence of the power series

∞∑
n=0

(−1)nx2n+1

2n + 1
= x −

x3

3
+

x5

5
− . . .

Use the ratio test. The ratio of consecutive terms is given by∣∣∣∣(−1)n+1x2n+3

2n + 3
· 2n + 1

(−1)nx2n+1

∣∣∣∣ =
x2(2n + 1)

2n + 3
.

As this tends towards the limit x2 as n → ∞, the ratio test tells us that this
series converges when x2 < 1 and diverges when x2 > 1. So we know the radius of
convergence is R = 1.

Now we need to test for convergence at x = ±1, where the ratio test is inconclu-
sive. When x = 1, we get the alternating series 1 − 1/3 + 1/5 − 1/7 + . . ., which
evidently passes the alternating series test. Similarly, when x = −1, we get the al-
ternating series −1+1/3−1/5+1/7− . . ., which is just the negative of the previous
series, so also converges. Therefore, the interval of convergence is [−1, 1].

• Determine the interval of convergence of the power series

∞∑
n=0

en(x− 2)nn

3n
. Apply

the ratio test; the ratio of consecutive terms is∣∣∣∣en+1(x− 2)n+1(n + 1)3n

en(x− 2)n(n)3n+1

∣∣∣∣ =

∣∣∣∣e(x− 2)(n + 1)

3n

∣∣∣∣
As n → ∞, this has limit |e(x − 2)/3|. This is < 1 precisely when |x − 2| < 3/e,
or when 2 − 3/e < x < 2 + 3/e. We now test for convergence at the endpoints.
When x = 2 + 3/e, we obtain the series

∑∞
n=0 n, which obviously diverges, while

when x = 2−3/e, we obtain the series
∑∞

n=0 n(−1)n, which also obviously diverges.
Therefore, the interval of convergence is (2−3/e, 2+3/e). The radius of convergence
is 3/e.
• Here is a slight variation on the above problems. Suppose we are given a power

series
∑

cnx
n which has radius of convergence R = 2. Consider the related power

series
∑

cnx
2n. Does this series converge at x = 1? How about x = 3/2? What is

the radius of convergence of this series?
To answer the first two questions, plug in x = 1, 3/2: we get the series

∑
cn12n =∑

cn1n. This is just the original series evaluated at x = 1, which we know con-
verges since 1 < R = 2. Similarly, for x = 3/2, we get the series

∑
cn(3/2)2n =∑

cn(9/4)n. This is the original series at x = 9/4, which diverges since 9/4 > R = 2.
To find the radius of convergence, we follow the idea in these two examples. Since∑
cnx

2n =
∑

cn(x2)n, this series converges when x2 < 2 and diverges when x2 > 2.
Therefore, this series has radius of convergence R =

√
2.

• Similar reasoning to the above applies when we want to consider a series
∑

cn(x−a)n

or
∑

cn(x/b)n. If
∑

cnx
n has radius of convergence R, then

∑
cn(x − a)n has

radius of convergence R as well (this time the interval is centered at a, not 0), while
cn(x/b)n has radius of convergence R|b|. In principle, one could mix and match
these three ways of modifying a power series.

In summary, a power series is any series of the form
∑

cn(x−a)n. The set of x for which
this series converges is an interval. To determine the radius of convergence, you usually
want to use the ratio test. To determine convergence at the endpoints of the interval, you
will need to usually apply some other test.


