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We are still interested in the question of determining whether various series converge or
diverge. Our arsenal of tests include testing geometric series, the nth term test, the integral
test (of which p-series is a special case), and the limit and direct comparison tests. However,
most of these tests require that the terms of a series be positive. What happens if a series
has many negative terms?

1. The Alternating Series Test

An alternating series is a series
∑
an in which the an flip signs. For example,

∞∑
n=1

(−1)n = −1 + 1− 1 + 1− 1 + 1− . . .

is an alternating series. We require that consecutive terms always have different signs, so a
series like −1 + 1 + 1− 1 + 1 + 1− 1− 1 + . . . would not, strictly speaking, be considered
an alternating series.

We are interested in finding a way of determining when an alternating series converges.
First, notice that the nth term test for divergence implies that if an alternating series
converges, then its nth term must converge to 0. As it turns out, this is not enough to
obtain convergence, but the addition of the condition that the absolute values |an| form a
decreasing sequence turns out to be enough to show convergence of an alternating series.
We have the following:

Theorem. (The Alternating Series test). Let
∑∞

n=1(−1)nan be an alternating series, where
all the an ≥ 0. Then this series converges if limn→∞ an = 0 and an is a decreasing sequence.

The theorem is actually true with slightly less restrictive conditions. For example, as
written, the sign of the first term is negative, and of course the theorem would still be
true if the first term were positive (as long as the terms kept flipping signs). Also, that
the index starts at n = 1 is immaterial; we could start with any other index, as long as
consecutive terms have different signs. This test can only be used to check for convergence
– for example, if we had an alternating series which did not satisfy the hypotheses of this
test, it might still be possible for the series to converge. Never say that a series diverges
because of the alternating series test. On the other hand, if you are unable to use the
alternating series test because limn→∞ an 6= 0, then you can conclude divergence by the
nth term test.

Examples.

• Consider the series
∑∞

n=1(−1)n+1/n = 1− 1/2 + 1/3− 1/4 + . . .. This is sometimes
called the alternating harmonic series, because of the fact that it looks like the
harmonic series, except with alternating signs. This series converges, because of the
alternating series test. First, notice that the signs do indeed flip for each pair of
consecutive terms. Secondly, the absolute values of the terms of the series form a
decreasing sequence (|an| = 1/n), and finally, the limit of those absolute values is
indeed 0. This is in contrast to the fact that the harmonic series diverges. Notice
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that even though we know that this series converges, we cannot calculate its limit
yet.
• Consider the more general series

∑∞
n=1(−1)n+1/np = 1− 1/2p + 1/3p − 1/4p + . . .,

where p > 0 is some real number. Then this series also converges by the alternating
series test, because the signs of consecutive terms are different, the absolute values
of those terms form a decreasing sequence, and have limit 0. These series are often
called alternating p-series, for the obvious reason.
• Sometimes the sign flips can be cleverly written in a series. Consider the series∑∞

n=0 cos(nπ)/(n+ 1)2. Although on the surface this might not look like an alter-
nating series, notice that cos(nπ) = (−1)n. Therefore, this really is an alternating
series. It converges by the alternating series test, since 1/(n + 1)2 is a decreasing
sequence which converges to 0.
• Consider the series

∑100
n=1 n! +

∑∞
n=101(−1)n(n+ 1)/(n2 + 1) = 1! + 2! + . . .+ 100! +∑∞

n=101(−1)n(n + 1)/(n2 + 1). Strictly speaking, this is not an alternating series,
since the first hundred terms do not change signs, but after that we have a se-
ries which is alternating, and satisfies the hypotheses of the alternating series test.
Therefore, if we ignore the first hundred terms, we have a series which converges.
Adding back in those first hundred terms does not affect the convergence or diver-
gence of the series (although it obviously affects the value of the series), so this
series also converges.
• Does the series

∑∞
n=1(−1)n

√
n+ 3/

√
4n+ 3 converge or diverge? This is an alter-

nating series. Notice that the nth term of the sequence does not converge to 0:
instead, as n gets large, the nth term oscillates between values close to −1/2 and
1/2, because

√
n+ 3/

√
4n+ 3 has limit 1/2. Therefore, this series diverges by the

nth term test. (DO NOT say that the series diverges because of the alternating
series test.)
• Does the series

∑∞
n=0(−1)n2n/n! converge or diverge? Again, this is an alternating

series (that the index starts with n = 0 is irrelevant, as long as consecutive terms
have different signs). Let’s check that this series passes the alternating series test.
First, we claim that an = 2n/n! is a decreasing sequence, at least when n ≥ 3.
Consider the ratio an+1/an; we want to show that this is < 1. Since an+1/an =
2/(n+ 1), and this is obviously < 1 when n ≥ 3.

Next, we check that limn→∞ 2n/n! = 0. This can be done using the squeeze
theorem; for instance,

2n

n!
=

2 · 2 · · · 2 · 2
n · (n− 1) · · · (2) · 1

=
2

n

2

n− 1
· · · 2

2

2

1
.

Notice that every term in the product on the right except the last two are < 1. So
we have the inequality

2

n

2

n− 1
· · · 2

2

2

1
<

4

n
.

Since 4/n → 0 as n → ∞, and 0 ≤ an is obvious, the squeeze theorem says that
2n/n!→ 0. Notice that the exact same argument works for any exponential an, not
just for a = 2.

In any case, this series passes the alternating series test, so it converges.

2. Error estimates for the alternating series test

Suppose we have applied the alternating series test to a series
∑

(−1)nan to verify that
the series converges. However, even if we use the alternating series test to determine
convergence, we have no way of actually knowing what value the series converges to. In



MATH 8 CLASS 5 NOTES, 10/1/2010 3

general, it is difficult to exactly determine the value of an alternating series. However, we
can try to approximate the value of the series.

The most direct way to approximate the value of a convergent series is to sum lots of
terms; that is, use the partial sums sn, for n large, as an estimate for the actual value of
the series. However, for this to be useful, we need to have a way of estimating the error of
the estimate: that is, the difference between the actual value of the series (which we do not
know!) and the estimate we use.

In the case of an alternating series, we have a very simple upper bound for the error:

Theorem. (Error estimate for alternating series test) Suppose the series
∑

(−1)nan con-
verges by the alternating series test. Let s be the value of the series, and let sn =∑n

i=1(−1)iai be the nth partial sum. Then

|sn − s| < |an+1|

In other words, if we estimate such a series by using the first n terms of the series, the
error is always less than the size of the first omitted term in the estimate. Let’s look at
some examples:

Examples.

• Consider the alternating harmonic series
∑∞

n=1(−1)n+1/n. This series converges
and has some value. If we use the first 100 terms of the series to estimate the value
of the series, then the error is less than or equal to 1/101, which is the first term
that isn’t used. If we use the first million terms, then the error is less than or equal
to 1/1000001. Notice that this series is very hard to estimate – obtaining accuracy
to N decimal places takes about 10N terms.
• Consider the alternating series

∑∞
n=1(−1)n+1/(2n−1)! = 1/1−1/3!+1/5!−1/7!+. . ..

(One quickly checks this passes the alternating series test.) If we use the first four
terms of this series to estimate the value of the series, the error of this estimate is
less than 1/9!. In contrast to the previous example, 9! = 362880, so the convergence
of this series to its value is very rapid, in the sense that we only have to take a few
terms to get a reasonably accurate estimate. For instance, s4 = 0.841468254...
is the value when we use four terms in this series, while the actual value of the
series is 0.841470984.... So we get four digits of accuracy with four terms in this
example, while in the previous example (alternating harmonic series) we would need
something like 10, 000 terms.
• A common type of question you might see is as follows: given a series

∑
(−1)nan

which passes the alternating series test, what is the least number of terms you can
use to approximate the series to within some given amount of error? For example,
given the series

∑∞
n=1(−1)n/(n2 + 2), one checks this passes the alternating series

test. What is the least number of terms you need to ensure that the error is less
than 1/106? The 1000th term is (−1)1000/(106 + 2), which is just barely less than
1/106. Since 1/(9992 +2) > 1/106, we see that we need at least 999 terms to ensure
that the error is less than 1/106. (Notice that it is possible for |s999 − s| to be less
than 1/106, but we don’t actually know if this is true using the error estimate for
alternating series. So we are looking for the smallest n for which the error estimate
for alternating series can guarantee that |sn − s| < 1/106.)
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3. Conditional and absolute convergence

We saw that the alternating harmonic series
∑∞

n=1(−1)n+1/n converges, while the har-
monic series

∑∞
n=1 1/n diverges. We can obtain the harmonic series from the alternating

harmonic series by taking the absolute value of each term of the series. This type of situation
is important enough that we give it a name:

Definition. Suppose
∑
an converges but

∑
|an| diverges. Then we call

∑
an a conditionally convergent

series. If instead both
∑
an and

∑
|an| converge, then we call

∑
an an absolutely convergent

series.

Notice that we do not require
∑
an to be an alternating series in this definition.

Examples.

• The alternating harmonic series is a conditionally convergent series. More generally,
the alternating p-series, for 0 < p < 1, is also conditionally convergent, since we said
earlier that the alternating p-series converges, while the p-series

∑
1/np diverges,

when 0 < p < 1.
• The alternating p-series for p > 1 is absolutely convergent, because the p-series∑

1/np is convergent for p > 1.
• Is the series

∑∞
n=1(−1)n3/

√
n divergent, conditionally convergent, or absolutely

convergent? Notice that this is just 3 times the alternating p-series for p = 1/2.
Since multiplying by a constant does not affect convergence or divergence of a series,
this series is conditionally convergent.
• Is the series

∑∞
n=1(−1)n3n+1/5n divergent, conditionally convergent, or absolutely

convergent? This series is a geometric series with r = −3/5, so it converges. The
series obtained by taking absolute values of each term is

∑
3n+1/5n, which is geo-

metric with ratio r = 3/5, so it also converges, and the original series is absolutely
convergent.

The examples we have seen strongly suggest that if
∑
|an| converges, then

∑
an also

converges. This is in fact true. Even though this may seem intuitively obvious (or maybe
not), it is a little bit tricky to actually prove this statement, and we will not do so here.
However, this fact does allow us to add to the list of series that we can show converge:

Example.

• Does the series
∑∞

n=1 sinn/n2 converge or diverge? Notice that the sign oscillation
in this problem is irregular, because the sign of sinn does not change with any
sort of regular pattern. In particular, we cannot use the alternating series test.
Nevertheless, if we take absolute values we obtain the series

∑∞
n=1 | sinn|/n2, and

because | sinn| ≤ 1, we can use direct comparison to compare this series with∑
1/n2. This is convergent, being a p-series with p > 1, so

∑
| sinn|/n2 converges,

and therefore the original series
∑

sinn/n2 converges as well.


