Practice Exam 2

Instructions. Show all your work. Full credit may not be given for correct answers if they are not adequately justified. The exam is closed book: no notes or calculators are permitted.

Good luck!

1. Find parametric equations for the line segment from $(2,1,4)$ to $(5,2,1)$. Be sure to indicate the domain of your parameter.
2. Find the equation of the plane containing the point $(1,2,3)$ and the line

$$
\frac{x-2}{5}=\frac{y-4}{2}=\frac{z-4}{3}
$$

3. Evaluate the following integrals:
(a) $\int \frac{\ln (x)}{x^{2}} d x$
(b) $\int \frac{x \ln \left(1+x^{2}\right)}{1+x^{2}} d x$
(c) $\int \tan ^{4}(x) d x$
(d) Evaluate $\int \frac{x+1}{\sqrt{x^{2}+2 x+2}} d x$
4. A woman exerts a horizontal force of 25 pounds as she pushes a box up a ramp that is 10 feet long and inclined at an angle of 30 degrees above the horizontal. Find the work done on the box.
5. The line

$$
l_{1}: x=t, y=2 t+1, z=t+4
$$

intersects one of the following two parallel lines. Determine which of the lines it intersects and find the intersection point.

$$
\begin{aligned}
& l_{2}: x=1+2 t, y=2+5 t, z=6+t \\
& l_{3}: x=1+2 t, y=2+5 t, z=5+t
\end{aligned}
$$

6. Consider the curve defined by the vector-valued function

$$
\mathbf{r}(t)=\left\langle t, t^{2}, t^{3}\right\rangle
$$

(a) Find the tangent line to this curve at the point with parameter $t=1$.
(b) (Recall we are considering the curve $\mathbf{r}(t)=\left\langle t, t^{2}, t^{3}\right\rangle$.) Find all points on this curve at which the tangent vector to the curve is parallel to the plane $x-2 y+z=0$. (You can specify the points either by giving their coordinates or by just specifying the parameter value t.)
7. Sketch several level curves of the function $f(x, y)=\frac{x^{2}+y^{2}}{x}$
8. Multiple choice. Circle the correct response. No partial credit will be given.
(a) Let \mathbf{u} and \mathbf{v} be non-parallel vectors and denote the scalar projection of \mathbf{v} onto \mathbf{u} by $\operatorname{comp}_{\mathbf{u}} \mathbf{v}$. If $\operatorname{comp}_{\mathbf{u}} \mathbf{v}=-2$, then the angle between \mathbf{u} and \mathbf{v} is
A. $<\frac{\pi}{2} \quad$ B. $\frac{\pi}{2} \quad C .>\frac{\pi}{2} \quad$ D. $\pi \quad E$. None of these
(b) The parallelepiped spanned by the vectors $\langle 1,0,2\rangle,\langle 3,1,1\rangle$ and $\langle 1,2,5\rangle$ has volume
A. $8 \quad$ B. $9 \quad C .10 \quad D .13 \quad E$. None of these
(c) If $\mathbf{v} \cdot \mathbf{w}=0$, then $\mathbf{v} \times(\mathbf{v} \times \mathbf{w})$ is
A. Perpendicular to w B. Equal to the zero vector C. Parallel to w D. Not defined E. None of these
(d) A particle moving in space has acceleration at time t given by

$$
\mathbf{a}(t)=\left\langle 2,6 t, 12 t^{2}\right\rangle
$$

and has initial velocity $\mathbf{v}(0)=\langle 1,0,0\rangle$. Then its velocity $\mathbf{v}(t)$ at time t is
A. $\langle 3,3,4\rangle \quad$ B. $\langle 0,6,24 t\rangle \quad$ C. $\left\langle 2 t+1,3 t^{2}, 4 t^{3}\right\rangle \quad D .\langle 2 t+1+$ $C_{1}, 3 t^{2}+C_{2}$, $\left.4 t^{3}+C_{3}\right\rangle \quad E$. None of these

