Week 2 Monday

Set Theory
Due Wednesday Jan 20th

This homework tests understanding of the process of translating the usual mathematical presentation into a first order theory. You need only use formal first order formulas where it is clear that you should do so.

1) The Theory of Gadgets:

(i) Turn the following description of a class of mathematical objects into a first order theory. This means picking a language/signature (i.e. all the relation, function and constant symbols in the language), then choosing a set of well-formed formulas to create your theory.

Definition. We say that X, \triangle, \square, and \bigcirc form a gadget if the following conditions are satisfied. There is some $\gamma \in X$ such that, for any $x, y \in X$, $\triangle(\gamma, x, y)=\triangle(x, \gamma, y)=\triangle(x, y, \gamma)=\gamma$. A triple $\langle x, y, z\rangle \in X \times X \times X$ is $\square(x, y, z)$ if and only if $\triangle(x, y, z)=\triangle(y, \triangle(y, x, z), z)$. An element $x \in X$ is $\bigcirc(x)$ if and only if, for any $y, z \in X$, it is true that $\square(x, y, z)$.
(ii) Is it true that, for any gadget $X, \exists x \bigcirc(x)$? Give a counter example or a proof, accordingly.
*(iii) Complete the following definition of gadget isomorphism (remember, an isomorphism must respect both the relation and function symbols of the language):

Definition. Let $\mathcal{M}=<X, \triangle^{\mathcal{M}}, \square^{\mathcal{M}}, \bigcirc^{\mathcal{M}}>$ and $\mathcal{N}=<X, \triangle^{\mathcal{N}}, \square^{\mathcal{N}}, \bigcirc^{\mathcal{N}}>$ be gadgets. A function $\psi: X \rightarrow Y$ is called a gadget isomorphism if it is one-to-one and onto (i.e. a bijection) and satisfies the following 3 conditions:
[You give the three conditions]

The following vector space axioms are given for reference in $\mathbf{2}$).
Definition. Let \mathbb{F} be a field. A set V along with binary operations $+: V \times V \rightarrow$ V and $\cdot: \mathbb{F} \times V \rightarrow V$ is called a vectorspace if it satisfies the following conditions:
i. $\forall x, y \in V, x+y=y+x$
ii. $\forall x, y, z \in V,(x+y)+z=x+(y+z)$
iii. $\exists 0 \in V, \forall x \in V, x+0=x$
iv. $\forall x \in V \exists y \in V, x+y=0$
v. $\forall x \in V, 1 \cdot x=x$
vi. $\forall a, b \in \mathbb{F} \forall x \in V,(a b) \cdot x=a \cdot(b \cdot x)$
vii. $\forall a \in \mathbb{F} \forall x, y \in V, a \cdot(x+y)=a \cdot x+a \cdot y$
viii. $\forall a, b \in \mathbb{F} \forall x \in V,(a+b) \cdot x=a \cdot x+b \cdot x$
*2) The Theory the Vector Spaces:
Let \mathbb{F} be a field. Create a first order language $\widehat{\mathcal{L}}=\mathcal{L} \cup \mathcal{L}^{*}$ (i.e. the core first order logic symbols with an additional set of relation and function symbols \mathcal{L}^{*} chosen by you) and a theory $T_{V S}$ in the language $\widehat{\mathcal{L}}$ whose models are exactly the vector spaces over \mathbb{F}.

Hint: You'll want to make the universe (of discourse) of each model (i.e. the set associated with the model) the vectors in your vector space. This makes each formula that looks like $\forall a \in \mathbb{F} \phi(a)$ not directly translatable into our first order language (this is because the \forall is interpreted as ranging over the vectors, not the scalars). However, we can replace each instance of $\forall a \in \mathbb{F} \phi(a)$ by a collection of formulas $\{\phi(a)\}_{a \in \mathbb{F}}$. Now, for each $\phi(a)$ to be a legitimate formula in a first order language, we need only replace the instance of a with a language symbol that fulfills the same functionality as a.

